hw: Henze-Wagner High-Dimensional Test for Multivariate Normality
Description
Performs the high-dimensional version of the BHEP test for
multivariate normality as proposed by Henze and Wagner (1997).
When the covariance matrix is singular (e.g., when p > n) a
Moore-Penrose pseudoinverse is used.
Usage
hw(
data,
use_population = TRUE,
tol = 1e-25,
bootstrap = FALSE,
B = 1000,
cores = 1
)
Value
A data frame with one row containing the following columns:
Test ("Henze-Wagner"), Statistic and p.value.
Arguments
- data
A numeric matrix or data frame with observations in rows
and variables in columns.
- use_population
Logical; if TRUE, uses the population
covariance estimator \(\frac{n-1}{n} \times \Sigma\); otherwise
uses the sample covariance. Default is TRUE.
- tol
Numeric tolerance passed to solve when
inverting the covariance matrix. Default is 1e-25.
- bootstrap
Logical; if TRUE, compute p-value via bootstrap
resampling. Default is FALSE.
- B
Integer; number of bootstrap replicates used when
bootstrap = TRUE. Default is 1000.
- cores
Integer; number of cores for parallel computation when
bootstrap = TRUE. Default is 1.
Examples
Run this codeif (FALSE) {
data <- iris[1:50, 1:4]
hw_result <- hw(data)
hw_result
}
Run the code above in your browser using DataLab