# NOT RUN {
library(plyr)
# Design matrix should only contain columns of variables
# Export will be a matrix-like data
# Using kmeans (default) clustering algrithm
data_dim <- dataset2[,1:4]
result <- MixMVN_BayesianPosteriori(data=data_dim, species=3)
result
# Get the parameters of the cluster1:
result[1,]
# Get the mixture probability of cluster2:
# (Attention to the difference between
# result[2,1][[1]] and result[2,1])
result[2,1][[1]]
# Get the mean vector of cluster1:
result[1,2][[1]]
# Get the covariance matrix of cluster3:
result[3,3][[1]]
# }
Run the code above in your browser using DataLab