Given the matrix
GSVD(data, plin = NULL, pcol = NULL)
Eigenvalues, that is, line vector with singular values of the decomposition.
Eigenvectors referring rows.
Eigenvectors referring columns.
Matrix used for decomposition.
Weight for rows.
Weight for columns
Paulo Cesar Ossani
Marcelo Angelo Cirillo
If plin or pcol is not used, it will be calculated as the usual singular value decomposition.
Abdi, H. Singular Value Decomposition (SVD) and Generalized Singular Value Decomposition (GSVD). In: SALKIND, N. J. (Ed.). Encyclopedia of measurement and statistics. Thousand Oaks: Sage, 2007. p. 907-912.
data <- matrix(c(1,2,3,4,5,6,7,8,9,10,11,12), nrow = 4, ncol = 3)
svd(data) # Usual Singular Value Decomposition
GSVD(data) # GSVD with the same previous results
# GSVD with weights for rows and columns
GSVD(data, plin = c(0.1,0.5,2,1.5), pcol = c(1.3,2,0.8))
Run the code above in your browser using DataLab