Fits the well known C-svc, nu-svc, (classification) one-class-svc (novelty) eps-svr, nu-svr (regression) formulations along with native multi-class classification formulations and the bound-constraint SVM formulations.
SVMModel(scaled = TRUE, type = NULL, kernel = c("rbfdot", "polydot",
"vanilladot", "tanhdot", "laplacedot", "besseldot", "anovadot",
"splinedot"), kpar = "automatic", C = 1, nu = 0.2, epsilon = 0.1,
cache = 40, tol = 0.001, shrinking = TRUE)SVMANOVAModel(sigma = 1, degree = 1, ...)
SVMBesselModel(sigma = 1, order = 1, degree = 1, ...)
SVMLaplaceModel(sigma = NULL, ...)
SVMLinearModel(...)
SVMPolyModel(degree = 1, scale = 1, offset = 1, ...)
SVMRadialModel(sigma = NULL, ...)
SVMSplineModel(...)
SVMTanhModel(scale = 1, offset = 1, ...)
logical vector indicating the variables to be scaled.
type of support vector machine.
kernel function used in training and predicting.
list of hyper-parameters (kernel parameters).
cost of constraints violation defined as the regularization term in the Lagrange formulation.
parameter needed for nu-svc, one-svc, and nu-svr.
parameter in the insensitive-loss function used for eps-svr, nu-svr and eps-bsvm.
cache memory in MB.
tolerance of termination criterion.
whether to use the shrinking-heuristics.
inverse kernel width used by the ANOVA, Bessel, and Laplacian kernels.
degree of the ANOVA, Bessel, and polynomial kernel functions.
arguments to be passed to SVMModel
.
order of the Bessel function to be used as a kernel.
scaling parameter of the polynomial and hyperbolic tangent kernels as a convenient way of normalizing patterns without the need to modify the data itself.
offset used in polynomial and hyperbolic tangent kernels.
MLModel
class object.
factor
, numeric
SVMANOVAModel: C
, degree
SVMBesselModel: C
, order
, degree
SVMLaplaceModel: C
, sigma
SVMLinearModel: C
SVMPolyModel: C
, degree
, scale
SVMRadialModel: C
, sigma
Arguments kernel
and kpar
are automatically set by the
kernel-specific constructor functions.
Default values for the NULL
arguments and further model details can be
found in the source link below.
# NOT RUN {
library(MASS)
fit(medv ~ ., data = Boston, model = SVMRadialModel())
# }
Run the code above in your browser using DataLab