
Last chance! 50% off unlimited learning
Sale ends in
Model constructor functions supplied by MachineShop are summarized in the table below according to the types of response variables with which each can be used.
Function | Categorical | Continuous | Survival |
AdaBagModel |
f | ||
AdaBoostModel |
f | ||
BARTModel |
f | n | S |
BARTMachineModel |
b | n | |
BlackBoostModel |
b | n | S |
C50Model |
f | ||
CForestModel |
f | n | S |
CoxModel |
S | ||
CoxStepAICModel |
S | ||
EarthModel |
f | n | |
FDAModel |
f | ||
GAMBoostModel |
b | n | S |
GBMModel |
f | n | S |
GLMBoostModel |
b | n | S |
GLMModel |
b | n | |
GLMStepAICModel |
b | n | |
GLMNetModel |
f | m,n | S |
KNNModel |
f,o | n | |
LARSModel |
n | ||
LDAModel |
f | ||
LMModel |
f | m,n | |
MDAModel |
f | ||
NaiveBayesModel |
f | ||
NNetModel |
f | n | |
PDAModel |
f | ||
PLSModel |
f | n | |
POLRModel |
o | ||
QDAModel |
f | ||
RandomForestModel |
f | n | |
RangerModel |
f | n | S |
RPartModel |
f | n | S |
SurvRegModel |
S | ||
SurvRegStepAICModel |
S | ||
SVMModel |
f | n | |
SVMANOVAModel |
f | n | |
SVMBesselModel |
f | n | |
SVMLaplaceModel |
f | n | |
SVMLinearModel |
f | n | |
SVMPolyModel |
f | n | |
SVMRadialModel |
f | n | |
SVMSplineModel |
f | n | |
SVMTanhModel |
f | n | |
TreeModel |
f | n | |
XGBModel |
f | n | |
XGBDARTModel |
f | n | |
XGBLinearModel |
f | n | |
XGBTreeModel |
f | n |
Categorical: b = binary, f = factor, o = ordered Continuous: m = matrix, n = numeric Survival: S = Surv
Automated combinations, tuning, or selection of these models can be defined with the following meta-model functions:
StackedModel |
Stacked Regression |
SuperModel |
Super Learner |
TunedModel |
Model Tuning over Parameter Grid |
SelectedModel |
Model Selection from Candidate Set |