Learn R Programming

ManlyMix (version 0.1.3)

Manly.EM: EM algorithm for Manly mixture model

Description

Runs the EM algorithm for a Manly mixture model with specified initial membership and transformation parameters.

Usage

Manly.EM(X, id = NULL, la = NULL, tau = NULL, Mu = NULL, S = NULL, tol = 1e-5, max.iter = 1000)

Arguments

X
dataset matrix (n x p)
id
initial membership vector (length n)
la
initial transformation parameters (K x p)
tau
initial vector of mixing proportions (length K)
Mu
initial matrix of mean vectors (K x p)
S
initial array of covariance matrices (p x p x K)
tol
tolerance level
max.iter
maximum number of iterations

Value

la
matrix of the estimated transformation parameters (K x p)
tau
vector of mixing proportions (length K)
Mu
matrix of the estimated mean vectors (K x p)
S
array of the estimated covariance matrices (p x p x K)
gamma
matrix of posterior probabilities (n x K)
id
estimated membership vector (length n)
ll
log likelihood value
bic
Bayesian Information Criterion
iter
number of EM iterations run
flag
convergence flag (0 - success, 1 - failure)

Details

Runs the EM algorithm for a Manly mixture model for a provided dataset. Manly mixture model assumes that a multivariate Manly transformation applied to each component allows to reach near-normality. A user has a choice to specify either initial id vector 'id' and transformation parameters 'la' or initial mode parameters 'la', 'tau', 'Mu', and 'S'. In the case when transformation parameters are not provided, the function runs the EM algorithm without any transformations, i.e., it is equivalent to the EM algorithm for a Gaussian mixtuire model. If some transformation parameters have to be excluded from the consideration, in the corresponding positions of matrix 'la', the user has to specify value 0. Notation: n - sample size, p - dimensionality of the dataset X, K - number of mixture components.

See Also

Manly.select

Examples

Run this code

set.seed(123)

K <- 3; p <- 4
X <- as.matrix(iris[,-5])
id.true <- rep(1:K, each = 50)

# Obtain initial memberships based on the K-means algorithm
id.km <- kmeans(X, K)$cluster

# Run the EM algorithm for a Gaussian mixture model based on K-means solution
A <- Manly.EM(X, id.km)
id.Gauss <- A$id

table(id.true, id.Gauss)

# Run the EM algorithm for a Manly mixture model based on Gaussian mixture solution
la <- matrix(0.1, K, p)
B <- Manly.EM(X, id.Gauss, la)
id.Manly <- B$id

table(id.true, id.Manly)

Run the code above in your browser using DataLab