##Exponential distributions
#set distribution parameter
lambda1 = 1
lambda2 = 2
#generate time to event
u = runif(100)
t.event1 = -log(u) / lambda1
t.event1 = sort(t.event1)
v = runif(100)
t.event2 = -log(v) / lambda2
t.event2 = sort(t.event2)
#censoring indicator
t1c = runif(100, 0, 1.5)
t.event1 = (t1c >= t.event1) * t.event1 + (t1c < t.event1) * t1c
event1 = 1 * (t1c > t.event1)
t2c = runif(100, 0, 0.8)
t.event2 = (t2c >= t.event2) * t.event2 + (t2c < t.event2) * t2c
event2 = 1 * (t2c > t.event2)
t.event = c(t.event1, t.event2)
event = c(event1, event2)
#group indicator
group = rep(c(1, 0), each = 100)
MW.plot(t.event, event, group,
copula = "clayton",
lower = 0.2, upper = 0.8,
s1 = "exponential", s2 = "exponential",
par1 = c(0, 0), par2 = c(0, 0), alpha = 0.05, logit = FALSE, xaxis = 2)
Run the code above in your browser using DataLab