# NOT RUN {
#Fixed shift size (essentially Duncan's cycle model).
res1 <- Markovstat(shiftfun="deg", h=1, k=1, sigma=1, s=0.2, delta=2.5)
res1
#Exponential shift - perfect repair - deterministic sampling
res2 <- Markovstat(shiftfun="exp", h=1, k=1, sigma=1, s=0.2, delta=2, Vd=30, V=18)
res2
#Notice how the In-control and the False-alarm states have non-zero probabilities.
#If the repair would be random (RanRep=TRUE), then these states would have zero probability.
#Exponential-geometric mixture shift - random repair - random sampling.
res3 <- Markovstat(shiftfun='exp-geo', h=1.5, k=2, sigma=1, s=0.2,
delta=1.2, probmix=0.7, probnbin=0.8, disj=2,
RanRep=TRUE, alpha=1, beta=3, RanSam=TRUE,
StateDep=TRUE, a=1, b=15, Vd=40, V=8)
res3
# }
Run the code above in your browser using DataLab