MatTrans.init: Initialization for the EM algorithm for matrix clustering
Description
Runs the initialization for the EM algorithm for matrix clustering
Usage
MatTrans.init(Y, K, n.start = 10, scale = 1)
Value
scale
scale parameter set by the user
result
parsimonious models
model
model types
loglik
log likelihood values
bic
bic values
best.result
best parsimonious model
best.model
best model type
best.loglik
best logliklihood
best.bic
best bic
trans
transformation type
Arguments
Y
dataset of random matrices (p x T x n), n random matrices of dimensionality (p x T)
K
number of clusters
n.start
initial random starts
scale
scaling parameter
Details
Random starts are used to obtain different starting values. The number of clusters, the skewness parameters, and number of random starts need to be specified. In the case when transformation parameters are not provided, the function runs the EM algorithm without any transformations, i.e., it is equivalent to the EM algorithm for a matrix Gaussian mixture.
Notation: n - sample size, p x T - dimensionality of the random matrices, K - number of mixture components.