
aggregate
. Splits the matrix into groups as
specified by groupings, which can be one or more variables. Aggregation
function will be applied to all columns in data, or as specified in formula.
Warning: groupings will be made dense if it is sparse, though data will not.## S3 method for class 'Matrix':
aggregate(x, groupings = NULL, form = NULL, fun = "sum",
...)
Matrix
or matrix-like objectsummarise
summarise
aggregate
skus<-Matrix(as.matrix(data.frame(
orderNum=sample(1000,10000,TRUE),
sku=sample(1000,10000,TRUE),
amount=runif(10000))),sparse=TRUE)
a<-aggregate.Matrix(skus[,'amount'],skus[,'sku',drop=FALSE])
m<-rsparsematrix(1000000,100,.001)
labels<-as.factor(sample(1e4,1e6,TRUE))
b<-aggregate.Matrix(m,labels)
orders<-data.frame(orderNum=as.factor(sample(1e6, 1e7, TRUE)),
sku=as.factor(sample(1e3, 1e7, TRUE)),
customer=as.factor(sample(1e4,1e7,TRUE)),
state = sample(letters, 1e7, TRUE), amount=runif(1e7))
system.time(d<-aggregate.Matrix(orders[,'amount',drop=FALSE],orders$orderNum))
Run the code above in your browser using DataLab