
Last chance! 50% off unlimited learning
Sale ends in
nsparseMatrix
class is a virtual class of sparse
“pattern” matrices, i.e., binary matrices conceptually
with TRUE
/FALSE
entries. Only the positions of the
elements that are TRUE
are stored. These can be stored in the “triplet” form
(TsparseMatrix
, subclasses ngTMatrix
,
nsTMatrix
, and ntTMatrix
which really contain pairs, not
triplets) or in compressed column-oriented form (class
CsparseMatrix
, subclasses ngCMatrix
,
nsCMatrix
, and ntCMatrix
) or--rarely--in
compressed row-oriented form (class RsparseMatrix
,
subclasses ngRMatrix
, nsRMatrix
, and ntRMatrix
).
The second letter in the name of these non-virtual classes indicates
g
eneral, s
ymmetric, or t
riangular.
new("ngCMatrix",
...)
and so on. More frequently objects are created by coercion of
a numeric sparse matrix to the pattern form for use in
the symbolic analysis phase
of an algorithm involving sparse matrices. Such algorithms often
involve two phases: a symbolic phase wherein the positions of the
non-zeros in the result are determined and a numeric phase wherein the
actual results are calculated. During the symbolic phase only the
positions of the non-zero elements in any operands are of interest,
hence numeric sparse matrices can be treated as sparse pattern
matrices.dgCMatrix
(m <- Matrix(c(0,0,2:0), 3,5, dimnames=list(LETTERS[1:3],NULL)))
## ``extract the nonzero-pattern of (m) into an nMatrix'':
nm <- as(m, "nsparseMatrix") ## -> will be a "ngCMatrix"
str(nm) # no 'x' slot
nnm <- !nm # no longer sparse
(nnm <- as(nnm, "sparseMatrix"))# "lgCMatrix"
## consistency check:
stopifnot(xor(as( nm, "matrix"),
as(nnm, "matrix")))
## low-level way of adding "non-structural zeros" :
nnm@x[2:4] <- c(FALSE,NA,NA)
nnm
as(nnm, "nMatrix") # NAs *and* non-structural 0 |---> 'TRUE'
data(KNex)
nmm <- as(KNex $ mm, "ngCMatrix")
str(xlx <- crossprod(nmm))# "nsCMatrix"
stopifnot(isSymmetric(xlx))
image(xlx, main=paste("crossprod(nmm) : Sparse", class(xlx)))
Run the code above in your browser using DataLab