Construct a Matrix of a class that inherits from `Matrix`

.

```
Matrix(data=NA, nrow=1, ncol=1, byrow=FALSE, dimnames=NULL,
sparse = NULL, doDiag = TRUE, forceCheck = FALSE)
```

data

an optional numeric data vector or matrix.

nrow

when `data`

is not a matrix, the desired number of rows

ncol

when `data`

is not a matrix, the desired number of columns

byrow

logical. If `FALSE`

(the default) the matrix is
filled by columns, otherwise the matrix is filled by rows.

dimnames

sparse

logical or `NULL`

, specifying if the result should
be sparse or not. By default, it is made sparse when more than half
of the entries are 0.

doDiag

logical indicating if a `'>diagonalMatrix`

object should be returned when the resulting matrix is diagonal
(*mathematically*). As class `'>diagonalMatrix`

`extends`

`'>sparseMatrix`

, this is a
natural default for all values of `sparse`

.

Otherwise, if `doDiag`

is false, a dense or sparse (depending on
`sparse`

) *symmetric* matrix will be returned.

forceCheck

logical indicating if the checks for structure
should even happen when `data`

is already a `"Matrix"`

object.

Returns matrix of a class that inherits from `"Matrix"`

.
Only if `data`

is not a `matrix`

and does not already inherit
from class `'>Matrix`

are the arguments
`nrow`

, `ncol`

and `byrow`

made use of.

If either of `nrow`

or `ncol`

is not given, an attempt is
made to infer it from the length of `data`

and the other
parameter.
Further, `Matrix()`

makes efforts to keep `logical`

matrices logical, i.e., inheriting from class `'>lMatrix`

,
and to determine specially structured matrices such as symmetric,
triangular or diagonal ones. Note that a *symmetric* matrix also
needs symmetric `dimnames`

, e.g., by specifying
`dimnames = list(NULL,NULL)`

, see the examples.

Most of the time, the function works via a traditional (*full*)
`matrix`

. However, `Matrix(0, nrow,ncol)`

directly
constructs an “empty” '>sparseMatrix, as does
`Matrix(FALSE, *)`

.

Although it is sometime possible to mix unclassed matrices (created
with `matrix`

) with ones of class `"Matrix"`

, it is much
safer to always use carefully constructed ones of class
`"Matrix"`

.

The classes `'>Matrix`

,
`'>symmetricMatrix`

,
`'>triangularMatrix`

, and
`'>diagonalMatrix`

; further,
`matrix`

.

Special matrices can be constructed, e.g., via
`sparseMatrix`

(sparse), `bdiag`

(block-diagonal), `bandSparse`

(banded sparse), or
`Diagonal`

.

# NOT RUN { Matrix(0, 3, 2) # 3 by 2 matrix of zeros -> sparse Matrix(0, 3, 2, sparse=FALSE)# -> 'dense' ## 4 cases - 3 different results : Matrix(0, 2, 2) # diagonal ! Matrix(0, 2, 2, sparse=FALSE)# (ditto) Matrix(0, 2, 2, doDiag=FALSE)# -> sparse symm. "dsCMatrix" Matrix(0, 2, 2, sparse=FALSE, doDiag=FALSE)# -> dense symm. "dsyMatrix" Matrix(1:6, 3, 2) # a 3 by 2 matrix (+ integer warning) Matrix(1:6 + 1, nrow=3) ## logical ones: Matrix(diag(4) > 0) # -> "ldiMatrix" with diag = "U" Matrix(diag(4) > 0, sparse=TRUE) # (ditto) Matrix(diag(4) >= 0) # -> "lsyMatrix" (of all 'TRUE') ## triangular l3 <- upper.tri(matrix(,3,3)) (M <- Matrix(l3)) # -> "ltCMatrix" Matrix(! l3) # -> "ltrMatrix" as(l3, "CsparseMatrix")# "lgCMatrix" Matrix(1:9, nrow=3, dimnames = list(c("a", "b", "c"), c("A", "B", "C"))) (I3 <- Matrix(diag(3)))# identity, i.e., unit "diagonalMatrix" str(I3) # note 'diag = "U"' and the empty 'x' slot (A <- cbind(a=c(2,1), b=1:2))# symmetric *apart* from dimnames Matrix(A) # hence 'dgeMatrix' (As <- Matrix(A, dimnames = list(NULL,NULL)))# -> symmetric forceSymmetric(A) # also symmetric, w/ symm. dimnames stopifnot(is(As, "symmetricMatrix"), is(Matrix(0, 3,3), "sparseMatrix"), is(Matrix(FALSE, 1,1), "sparseMatrix")) # }

Run the code above in your browser using DataCamp Workspace