
Construct a sparse model or “design” matrix,
from a formula and data frame (sparse.model.matrix
) or a single
factor (fac2sparse
).
The fac2[Ss]parse()
functions are utilities, also used
internally in the principal user level function
sparse.model.matrix()
.
sparse.model.matrix(object, data = environment(object),
contrasts.arg = NULL, xlev = NULL, transpose = FALSE,
drop.unused.levels = FALSE, row.names = TRUE,
sep = "", verbose = FALSE, ...)fac2sparse(from, to = c("d", "l", "n"),
drop.unused.levels = TRUE, repr = c("C", "R", "T"), giveCsparse)
fac2Sparse(from, to = c("d", "l", "n"),
drop.unused.levels = TRUE, repr = c("C", "R", "T"), giveCsparse,
factorPatt12, contrasts.arg = NULL)
a sparse matrix, extending CsparseMatrix
(for
fac2sparse()
if repr = "C"
as per default; a
TsparseMatrix
or RsparseMatrix
, otherwise).
For fac2Sparse()
, a list
of length two, both
components with the corresponding transposed model matrix, where the
corresponding factorPatt12
is true.
fac2sparse()
, the basic workhorse of
sparse.model.matrix()
, returns the transpose
(t
) of the model matrix.
an object of an appropriate class. For the default method, a model formula or terms object.
a data frame created with model.frame
. If
another sort of object, model.frame
is called first.
fac2Sparse()
:character string or NULL
or
(coercable to) "sparseMatrix"
, specifying the
contrasts to be applied to the factor levels.
to be used as argument of model.frame
if
data
has no "terms"
attribute.
logical indicating if the transpose should be
returned; if the transposed is used anyway, setting transpose = TRUE
is more efficient.
should factors have unused levels dropped?
The default for sparse.model.matrix
has been changed to
FALSE
, 2010-07, for compatibility with R's standard (dense)
model.matrix()
.
logical indicating if row names should be used.
character
string passed to paste()
when constructing column names from the variable name and its levels.
logical or integer indicating if (and how much) progress output should be printed.
further arguments passed to or from other methods.
(for fac2sparse()
:) a factor
.
a character indicating the “kind” of sparse matrix to
be returned. The default, "d"
is for double
.
deprecated, replaced with repr
; logical indicating if
the result must be a CsparseMatrix
.
character
string, one of "C"
,
"T"
, or "R"
, specifying the sparse representation to
be used for the result, i.e., one from the super classes
CsparseMatrix
, TsparseMatrix
, or
RsparseMatrix
.
logical vector, say fp
, of length two;
when fp[1]
is true, return “contrasted” t(X)
;
when fp[2]
is true, the original (“dummy”)
t(X)
, i.e, the result of fac2sparse()
.
Doug Bates and Martin Maechler, with initial suggestions from Tim Hesterberg.
model.matrix
in package stats, part of base R.
model.Matrix
in package MatrixModels; see ‘Note’.
as(f, "sparseMatrix")
(see coerce(from = "factor", ..)
in the class doc sparseMatrix) produces the
transposed sparse model matrix for a single factor f
(and no contrasts).
library(stats, pos = "package:base", verbose = FALSE)
dd <- data.frame(a = gl(3,4), b = gl(4,1,12))# balanced 2-way
options("contrasts") # the default: "contr.treatment"
sparse.model.matrix(~ a + b, dd)
sparse.model.matrix(~ -1+ a + b, dd)# no intercept --> even sparser
sparse.model.matrix(~ a + b, dd, contrasts = list(a="contr.sum"))
sparse.model.matrix(~ a + b, dd, contrasts = list(b="contr.SAS"))
## Sparse method is equivalent to the traditional one :
stopifnot(all(sparse.model.matrix(~ a + b, dd) ==
Matrix(model.matrix(~ a + b, dd), sparse=TRUE)),
all(sparse.model.matrix(~0 + a + b, dd) ==
Matrix(model.matrix(~0 + a + b, dd), sparse=TRUE)))
(ff <- gl(3,4,, c("X","Y", "Z")))
fac2sparse(ff) # 3 x 12 sparse Matrix of class "dgCMatrix"
##
## X 1 1 1 1 . . . . . . . .
## Y . . . . 1 1 1 1 . . . .
## Z . . . . . . . . 1 1 1 1
## can also be computed via sparse.model.matrix():
f30 <- gl(3,0 )
f12 <- gl(3,0, 12)
stopifnot(
all.equal(t( fac2sparse(ff) ),
sparse.model.matrix(~ 0+ff),
tolerance = 0, check.attributes=FALSE),
is(M <- fac2sparse(f30, drop= TRUE),"CsparseMatrix"), dim(M) == c(0, 0),
is(M <- fac2sparse(f30, drop=FALSE),"CsparseMatrix"), dim(M) == c(3, 0),
is(M <- fac2sparse(f12, drop= TRUE),"CsparseMatrix"), dim(M) == c(0,12),
is(M <- fac2sparse(f12, drop=FALSE),"CsparseMatrix"), dim(M) == c(3,12)
)
Run the code above in your browser using DataLab