Classes Cholesky
and pCholesky
represent
dense, pivoted Cholesky factorizations of
These classes store the entries of the Cholesky factor
Cholesky
) or
pCholesky
), the latter
giving the “packed” representation.
Dim
, Dimnames
inherited from virtual class
MatrixFactorization
.
uplo
a string, either "U"
or "L"
,
indicating which triangle (upper or lower) of the factorized
symmetric matrix was used to compute the factorization and
in turn whether x
stores
x
a numeric vector of length n*n
(Cholesky
) or n*(n+1)/2
(pCholesky
),
where n=Dim[1]
, listing the entries of the Cholesky
factor
perm
a 1-based integer vector of length Dim[1]
specifying the permutation applied to the rows and columns
of the factorized matrix. perm
of length 0 is valid and
equivalent to the identity permutation, implying no pivoting.
Class CholeskyFactorization
, directly.
Class MatrixFactorization
, by class
CholeskyFactorization
, distance 2.
Objects can be generated directly by calls of the form
new("Cholesky", ...)
or new("pCholesky", ...)
,
but they are more typically obtained as the value of
Cholesky(x)
for x
inheriting from
dsyMatrix
or dspMatrix
(often the subclasses of those reserved for positive
semidefinite matrices, namely dpoMatrix
and dppMatrix
).
coerce
signature(from = "Cholesky", to = "dtrMatrix")
:
returns a dtrMatrix
representing
the Cholesky factor
coerce
signature(from = "pCholesky", to = "dtpMatrix")
:
returns a dtpMatrix
representing
the Cholesky factor
determinant
signature(from = "p?Cholesky", logarithm = "logical")
:
computes the determinant of the factorized matrix
diag
signature(x = "p?Cholesky")
:
returns a numeric vector of length
expand1
signature(x = "p?Cholesky")
:
see expand1-methods
.
expand2
signature(x = "p?Cholesky")
:
see expand2-methods
.
solve
signature(a = "p?Cholesky", b = .)
:
see solve-methods
.
The LAPACK source code, including documentation; see https://netlib.org/lapack/double/dpstrf.f, https://netlib.org/lapack/double/dpotrf.f, and https://netlib.org/lapack/double/dpptrf.f.
Lucas, C. (2004). LAPACK-style codes for level 2 and 3 pivoted Cholesky factorizations. LAPACK Working Note, Number 161. https://www.netlib.org/lapack/lawnspdf/lawn161.pdf
Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University Press. tools:::Rd_expr_doi("10.56021/9781421407944")
Class CHMfactor
for sparse Cholesky factorizations.
Classes dpoMatrix
and dppMatrix
.
Generic functions Cholesky
,
expand1
and expand2
.
library(stats, pos = "package:base", verbose = FALSE)
library(utils, pos = "package:base", verbose = FALSE)
showClass("Cholesky")
set.seed(1)
m <- 30L
n <- 6L
(A <- crossprod(Matrix(rnorm(m * n), m, n)))
## With dimnames, to see that they are propagated :
dimnames(A) <- dn <- rep.int(list(paste0("x", seq_len(n))), 2L)
(ch.A <- Cholesky(A)) # pivoted, by default
str(e.ch.A <- expand2(ch.A, LDL = TRUE), max.level = 2L)
str(E.ch.A <- expand2(ch.A, LDL = FALSE), max.level = 2L)
## Underlying LAPACK representation
(m.ch.A <- as(ch.A, "dtrMatrix")) # which is L', not L, because
A@uplo == "U"
stopifnot(identical(as(m.ch.A, "matrix"), `dim<-`(ch.A@x, ch.A@Dim)))
ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)
## A ~ P1' L1 D L1' P1 ~ P1' L L' P1 in floating point
stopifnot(exprs = {
identical(names(e.ch.A), c("P1.", "L1", "D", "L1.", "P1"))
identical(names(E.ch.A), c("P1.", "L" , "L." , "P1"))
identical(e.ch.A[["P1"]],
new("pMatrix", Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),
margin = 2L, perm = invertPerm(ch.A@perm)))
identical(e.ch.A[["P1."]], t(e.ch.A[["P1"]]))
identical(e.ch.A[["L1."]], t(e.ch.A[["L1"]]))
identical(E.ch.A[["L." ]], t(E.ch.A[["L" ]]))
identical(e.ch.A[["D"]], Diagonal(x = diag(ch.A)))
all.equal(E.ch.A[["L"]], with(e.ch.A, L1 %*% sqrt(D)))
ae1(A, with(e.ch.A, P1. %*% L1 %*% D %*% L1. %*% P1))
ae1(A, with(E.ch.A, P1. %*% L %*% L. %*% P1))
ae2(A[ch.A@perm, ch.A@perm], with(e.ch.A, L1 %*% D %*% L1.))
ae2(A[ch.A@perm, ch.A@perm], with(E.ch.A, L %*% L. ))
})
## Factorization handled as factorized matrix
b <- rnorm(n)
all.equal(det(A), det(ch.A), tolerance = 0)
all.equal(solve(A, b), solve(ch.A, b), tolerance = 0)
## For identical results, we need the _unpivoted_ factorization
## computed by det(A) and solve(A, b)
(ch.A.nopivot <- Cholesky(A, perm = FALSE))
stopifnot(identical(det(A), det(ch.A.nopivot)),
identical(solve(A, b), solve(ch.A.nopivot, b)))
Run the code above in your browser using DataLab