# NOT RUN {
## Generate realizations of matrix-normal random variables
## set sample size, dimensionality, number of classes,
## and marginal class probabilities
N = 75
N.test = 150
N.total = N + N.test
r = 16
p = 16
C = 3
pi.list = rep(1/C, C)
## create class means
M.array = array(0, dim=c(r, p, C))
M.array[3:4, 3:4, 1] = 1
M.array[5:6, 5:6, 2] = .5
M.array[3:4, 3:4, 3] = -2
M.array[5:6, 5:6, 3] = -.5
## create covariance matrices U and V
Uinv = matrix(0, nrow=r, ncol=r)
for (i in 1:r) {
for (j in 1:r) {
Uinv[i,j] = .5^abs(i-j)
}
}
eoU = eigen(Uinv)
Uinv.sqrt = tcrossprod(tcrossprod(eoU$vec,
diag(eoU$val^(1/2))),eoU$vec)
Vinv = matrix(.5, nrow=p, ncol=p)
diag(Vinv) = 1
eoV = eigen(Vinv)
Vinv.sqrt = tcrossprod(tcrossprod(eoV$vec,
diag(eoV$val^(1/2))),eoV$vec)
## generate N.total realizations of matrix-variate normal data
set.seed(1)
X = array(0, dim=c(r,p,N.total))
class = numeric(length=N.total)
for(jj in 1:N.total){
class[jj] = sample(1:C, 1, prob=pi.list)
X[,,jj] = tcrossprod(crossprod(Uinv.sqrt,
matrix(rnorm(r*p), nrow=r)),
Vinv.sqrt) + M.array[,,class[jj]]
}
## fit matrix-normal model using maximum likelihood
out = MN_MLE(X = X, class = class)
# }
Run the code above in your browser using DataLab