Learn R Programming

MeasurementError.cor (version 1.44.0)

cor.me.matrix: A function to calculate measurement error estimates for all pairs of genes given by the matrix

Description

Given a matrix ( p x n) for observed values of p variables and a corresponding matrix for their standard errors, the all pairwise measurement error estimates for true correlations are returned

Usage

cor.me.matrix(exp, se)

Arguments

exp
observed value marix
se
standard error matrix

Value

The final estimates for true correlation (i.e. cor.true) from the measurement error model

Details

References

Ding, B.Y. and Gentleman, R.(2003) Measurement error model for correlation coeffcient estimation and its application in microarray analsysis

See Also

cor.me.vector

Examples

Run this code
 exp <- matrix(abs(rnorm(200,1000,20)),ncol=10)
 se <- matrix(abs(rnorm(200,50,5)),ncol=10)
 cor.me.matrix(exp,se)

Run the code above in your browser using DataLab