## Not run:
# # Clinical trial in patients with rheumatoid arthritis
#
# # Variable types
# var.type = parameters("BinomDist", "NormalDist")
#
# # Outcome distribution parameters
# plac.par = parameters(parameters(prop = 0.3),
# parameters(mean = -0.10, sd = 0.5))
#
# dosel.par1 = parameters(parameters(prop = 0.40),
# parameters(mean = -0.20, sd = 0.5))
# dosel.par2 = parameters(parameters(prop = 0.45),
# parameters(mean = -0.25, sd = 0.5))
# dosel.par3 = parameters(parameters(prop = 0.50),
# parameters(mean = -0.30, sd = 0.5))
#
# doseh.par1 = parameters(parameters(prop = 0.50),
# parameters(mean = -0.30, sd = 0.5))
# doseh.par2 = parameters(parameters(prop = 0.55),
# parameters(mean = -0.35, sd = 0.5))
# doseh.par3 = parameters(parameters(prop = 0.60),
# parameters(mean = -0.40, sd = 0.5))
#
# # Correlation between two endpoints
# corr.matrix = matrix(c(1.0, 0.5,
# 0.5, 1.0), 2, 2)
#
# # Outcome parameter set 1
# outcome1.plac = parameters(type = var.type,
# par = plac.par,
# corr = corr.matrix)
# outcome1.dosel = parameters(type = var.type,
# par = dosel.par1,
# corr = corr.matrix)
# outcome1.doseh = parameters(type = var.type,
# par = doseh.par1,
# corr = corr.matrix)
#
# # Outcome parameter set 2
# outcome2.plac = parameters(type = var.type,
# par = plac.par,
# corr = corr.matrix)
# outcome2.dosel = parameters(type = var.type,
# par = dosel.par2,
# corr = corr.matrix)
# outcome2.doseh = parameters(type = var.type,
# par = doseh.par2,
# corr = corr.matrix)
#
# # Outcome parameter set 3
# outcome3.plac = parameters(type = var.type,
# par = plac.par,
# corr = corr.matrix)
# outcome3.doseh = parameters(type = var.type,
# par = doseh.par3,
# corr = corr.matrix)
# outcome3.dosel = parameters(type = var.type,
# par = dosel.par3,
# corr = corr.matrix)
#
# # Data model
# data.model = DataModel() +
# OutcomeDist(outcome.dist = "MVMixedDist") +
# SampleSize(c(100, 120)) +
# Sample(id = list("Plac ACR20", "Plac HAQ-DI"),
# outcome.par = parameters(outcome1.plac, outcome2.plac, outcome3.plac)) +
# Sample(id = list("DoseL ACR20", "DoseL HAQ-DI"),
# outcome.par = parameters(outcome1.dosel, outcome2.dosel, outcome3.dosel)) +
# Sample(id = list("DoseH ACR20", "DoseH HAQ-DI"),
# outcome.par = parameters(outcome1.doseh, outcome2.doseh, outcome3.doseh))
#
# family = families(family1 = c(1, 2), family2 = c(3, 4))
# component.procedure = families(family1 ="HolmAdj", family2 = "HolmAdj")
# gamma = families(family1 = 0.8, family2 = 1)
#
# # Tests to which the multiplicity adjustment will be applied
# test.list = tests("Pl vs DoseH - ACR20",
# "Pl vs DoseL - ACR20",
# "Pl vs DoseH - HAQ-DI",
# "Pl vs DoseL - HAQ-DI")
#
# # Analysis model
# analysis.model = AnalysisModel() +
# MultAdjProc(proc = "MultipleSequenceGatekeepingAdj",
# par = parameters(family = family,
# proc = component.procedure,
# gamma = gamma),
# tests = test.list) +
# Test(id = "Pl vs DoseL - ACR20",
# method = "PropTest",
# samples = samples("Plac ACR20", "DoseL ACR20")) +
# Test(id = "Pl vs DoseH - ACR20",
# method = "PropTest",
# samples = samples("Plac ACR20", "DoseH ACR20")) +
# Test(id = "Pl vs DoseL - HAQ-DI",
# method = "TTest",
# samples = samples("DoseL HAQ-DI", "Plac HAQ-DI")) +
# Test(id = "Pl vs DoseH - HAQ-DI",
# method = "TTest",
# samples = samples("DoseH HAQ-DI", "Plac HAQ-DI"))
#
# # Evaluation model
# evaluation.model = EvaluationModel() +
# Criterion(id = "Marginal power",
# method = "MarginalPower",
# tests = tests("Pl vs DoseL - ACR20",
# "Pl vs DoseH - ACR20",
# "Pl vs DoseL - HAQ-DI",
# "Pl vs DoseH - HAQ-DI"),
# labels = c("Pl vs DoseL - ACR20",
# "Pl vs DoseH - ACR20",
# "Pl vs DoseL - HAQ-DI",
# "Pl vs DoseH - HAQ-DI"),
# par = parameters(alpha = 0.025)) +
# Criterion(id = "Disjunctive power - ACR20",
# method = "DisjunctivePower",
# tests = tests("Pl vs DoseL - ACR20",
# "Pl vs DoseH - ACR20"),
# labels = "Disjunctive power - ACR20",
# par = parameters(alpha = 0.025)) +
# Criterion(id = "Disjunctive power - HAQ-DI",
# method = "DisjunctivePower",
# tests = tests("Pl vs DoseL - HAQ-DI",
# "Pl vs DoseH - HAQ-DI"),
# labels = "Disjunctive power - HAQ-DI",
# par = parameters(alpha = 0.025))
#
# # Simulation Parameters
# sim.parameters = SimParameters(n.sims = 1000, proc.load = 2, seed = 42938001)
#
# # Perform clinical scenario evaluation
# results = CSE(data.model,
# analysis.model,
# evaluation.model,
# sim.parameters)
#
# # Reporting
# presentation.model = PresentationModel() +
# Project(username = "[Mediana's User]",
# title = "Case study",
# description = "Clinical trial in patients with rheumatoid arthritis") +
# Section(by = c("outcome.parameter")) +
# Table(by = c("multiplicity.adjustment")) +
# CustomLabel(param = "sample.size",
# label = paste0("N = ", c(100, 120)))
#
# # Report Generation
# GenerateReport(presentation.model = presentation.model,
# cse.results = results,
# report.filename = "Case study.docx")
#
# ## End(Not run)
Run the code above in your browser using DataLab