# List of all parameters
parameters = list()
# Endpoint type
parameters$endpoint_type = "Binary"
# Direction of favorable outcome
parameters$direction = "Higher"
# Number of enrolled patients (control, treatment)
parameters$sample_size = c(100, 200)
# Patient dropout rate
parameters$dropout_rate = 0.1
# Response rate in the control arm
parameters$control_rate = 0.1
# Response rate in the treatment arm
parameters$treatment_rate = 0.25
# Information fractions at IA1, IA2, FA (before sample size adjustment)
# and FA (after sample size adjustment)
parameters$info_frac = c(0.4, 0.6, 1, 1.4)
# Futility threshold for conditional power at IA1
parameters$futility_threshold = 0.2
# Promising interval for conditional power at IA2
parameters$promising_interval = c(0.5, 0.9)
# Target conditional power for increasing the sample size at IA2
parameters$target_power = 0.9
# One-sided alpha level
parameters$alpha = 0.025
# Number of simulations, you should prefer more
parameters$nsims = 100
# Number of cores for parallel calculations
parameters$ncores = 1
# Run simulations to compute operating characteristics
results = ADSSMod(parameters)
# Generate a simulation report (remove tempfile)
GenerateReport(results,
tempfile("ADSSMod Binary endpoint.docx", fileext=".docx"))
Run the code above in your browser using DataLab