job.kda <- list()
job.kda$label<-"HDLC"
## parent folder for results
job.kda$folder<- "Results"
## Input a network
## columns: TAIL HEAD WEIGHT
job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt",
package="Mergeomics")
## Gene sets derived from ModuleMerge, containing two columns, MODULE,
## NODE, delimited by tab
job.kda$modfile<- system.file("extdata","mergedModules.txt",
package="Mergeomics")
## "0" means we do not consider edge weights while 1 is opposite.
job.kda$edgefactor<-0.0
## The searching depth for the KDA
job.kda$depth<-1
## 0 means we do not consider the directions of the regulatory interactions
## while 1 is opposite.
job.kda$direction<-1
job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests
## kda.start() process takes long time while seeking hubs in the given net
## Here, we used a very small subset of the module list (1st 10 mods
## from the original module file):
moddata <- tool.read(job.kda$modfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
## save this to a temporary file and set its path as new job.kda$modfile:
tool.save(moddata, "subsetof.supersets.txt")
job.kda$modfile <- "subsetof.supersets.txt"
## Let's prepare KDA object for KDA:
job.kda <- kda.configure(job.kda)
job.kda <- kda.start(job.kda)
job.kda <- kda.prepare(job.kda)
set.seed(job.kda$seed)
i = 1 ## index of the module, whose p-val is calculated:
memb <- job.kda$module2nodes[[i]]
graph <- job.kda$graph ## we need to import a network
nsim <- job.kda$nperm ## number of simulations
## This auxiliary function is called by kda.analyze.exec(), which is called
## by kda.analyze() main function, see this main function for more details
hubs <- graph$hubs
hubnets <- graph$hubnets
nhubs <- length(hubs)
nnodes <- length(graph$nodes)
nmemb <- length(memb)
## Observed enrichment scores for the hubs of the given module.
obs <- rep(NA, nhubs)
k <- 1 ## actual using: for(k in 1:nhubs){}, for test, use only the 1st hub
g <- hubnets[[hubs[k]]]
obs[k] <- kda.analyze.test(g$RANK, g$STRENG, memb, nnodes)
## Then, estimate preliminary and final P-values by kda.analyze.simulate()
## See kda.analyze() for more details
## Remove the temporary files used for the test:
file.remove("subsetof.supersets.txt")
## remove the results folder
unlink("Results", recursive = TRUE)
Run the code above in your browser using DataLab