Learn R Programming

Mergeomics (version 1.0.0)

ssea.finish.details: Organize and save module, gene, top locus, Ps of MSEA results

Description

ssea.finish.details finds significant modules and their gene lists, and top marker (with GWAS -log10 transformed p-vals) of these genes, merge results of markers, genes and module statistics, sort results according to first, module enrichment score, then marker P-value, and saves these sorted results into the relevant files.

Usage

ssea.finish.details(job)

Arguments

job
data list including the results of MSEA process:
label: unique identifier for the analysis.
folder: output folder for results.
modinfo: descriptions of the modules.
resultsdata: frame including indexed module identities
(MODULE) and enrichment P-values (P).
database: database including indexed identities for 
modules, genes, and markers.

Value

None.

References

Shu L, Zhao Y, Kurt Z, Byars S, Tukiainen T, Kettunen J, Ripatti S, Zhang B, Inouye M, Makinen VP, Yang X. Mergeomics: integration of diverse genomics resources to identify pathogenic perturbations to biological systems. bioRxiv doi: http://dx.doi.org/10.1101/036012

See Also

ssea.finish

Examples

Run this code
job.msea <- list()
job.msea$label <- "hdlc"
job.msea$folder <- "Results"
job.msea$genfile <- system.file("extdata", 
"genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$marfile <- system.file("extdata", 
"marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$modfile <- system.file("extdata", 
"modules.mousecoexpr.liver.human.txt", package="Mergeomics")
job.msea$inffile <- system.file("extdata", 
"coexpr.info.txt", package="Mergeomics")
job.msea$nperm <- 100 ## default value is 20000

## ssea.start() process takes long time while merging the genes sharing high
## amounts of markers (e.g. loci). it is performed with full module list in
## the vignettes. Here, we used a very subset of the module list (1st 10 mods
## from the original module file) and we collected the corresponding genes
## and markers belonging to these modules:
moddata <- tool.read(job.msea$modfile)
gendata <- tool.read(job.msea$genfile)
mardata <- tool.read(job.msea$marfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
gendata <- gendata[which(!is.na(match(gendata$GENE, 
unique(moddata$GENE)))),]
mardata <- mardata[which(!is.na(match(mardata$MARKER, 
unique(gendata$MARKER)))),]

## save this to a temporary file and set its path as new job.msea$modfile:
tool.save(moddata, "subsetof.coexpr.modules.txt")
tool.save(gendata, "subsetof.genfile.txt")
tool.save(mardata, "subsetof.marfile.txt")
job.msea$modfile <- "subsetof.coexpr.modules.txt"
job.msea$genfile <- "subsetof.genfile.txt"
job.msea$marfile <- "subsetof.marfile.txt"
## run ssea.start() and prepare for this small set: (due to the huge runtime)
job.msea <- ssea.start(job.msea)
job.msea <- ssea.prepare(job.msea)
job.msea <- ssea.control(job.msea)
job.msea <- ssea.analyze(job.msea)
job.msea <- ssea.finish(job.msea)

## Estimate mod FDR values, sort according to significance, save full results:
job.msea <- ssea.finish.fdr(job.msea)
## Collect top markers(e.g.loci) within genes, save genes with top marker Pval
job.msea <- ssea.finish.genes(job.msea)
## Find signficant modules, collect gene members of top modules,
## Merge gene results (with top marker info), 
## Sort and save details according to enrichment and marker value:
job.msea <- ssea.finish.details(job.msea)

## Remove the temporary files used for the test:
file.remove("subsetof.coexpr.modules.txt")
file.remove("subsetof.genfile.txt")
file.remove("subsetof.marfile.txt")

Run the code above in your browser using DataLab