Learn R Programming

Mergeomics (version 1.0.0)

ssea.prepare.counts: Calculate hit counts up to a given quantile

Description

Counts unique loci in a module, maps the marker data of a module to the all available markers by creating a bit matrix for values above the given quantiles. Created bit matrix contains either TRUE (above quantiles) or FALSE (below or equals to quantiles) values as a resuls of these comparisons. It returns the results (marker mapping and bit matrix)

Usage

ssea.prepare.counts(locdata, nloci, quantiles)

Arguments

locdata
marker data
nloci
number of elements in markers list
quantiles
quantile points for test statistic

Value

res
a data list with the following components:
locus2row: mapped marker information
observed: bit matrix that involves TRUEs and FALSEs 

References

Shu L, Zhao Y, Kurt Z, Byars S, Tukiainen T, Kettunen J, Ripatti S, Zhang B, Inouye M, Makinen VP, Yang X. Mergeomics: integration of diverse genomics resources to identify pathogenic perturbations to biological systems. bioRxiv doi: http://dx.doi.org/10.1101/036012

See Also

ssea.prepare

Examples

Run this code
job.msea <- list()
job.msea$label <- "hdlc"
job.msea$folder <- "Results"
job.msea$genfile <- system.file("extdata", 
"genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$marfile <- system.file("extdata", 
"marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$modfile <- system.file("extdata", 
"modules.mousecoexpr.liver.human.txt", package="Mergeomics")
job.msea$inffile <- system.file("extdata", 
"coexpr.info.txt", package="Mergeomics")
job.msea$nperm <- 100 ## default value is 20000

## ssea.start() process takes long time while merging the genes sharing high
## amounts of markers (e.g. loci). it is performed with full module list in
## the vignettes. Here, we used a very subset of the module list (1st 10 mods
## from the original module file) and we collected the corresponding genes
## and markers belonging to these modules:
moddata <- tool.read(job.msea$modfile)
gendata <- tool.read(job.msea$genfile)
mardata <- tool.read(job.msea$marfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
gendata <- gendata[which(!is.na(match(gendata$GENE, 
unique(moddata$GENE)))),]
mardata <- mardata[which(!is.na(match(mardata$MARKER, 
unique(gendata$MARKER)))),]

## save this to a temporary file and set its path as new job.msea$modfile:
tool.save(moddata, "subsetof.coexpr.modules.txt")
tool.save(gendata, "subsetof.genfile.txt")
tool.save(mardata, "subsetof.marfile.txt")
job.msea$modfile <- "subsetof.coexpr.modules.txt"
job.msea$genfile <- "subsetof.genfile.txt"
job.msea$marfile <- "subsetof.marfile.txt"
## run ssea.start() and prepare for this small set: (due to the huge runtime)
job.msea <- ssea.start(job.msea)

## Remove extremely big or small modules:
st <- tool.aggregate(job.msea$moddata$MODULE)
mask <- which((st$lengths >= job.msea$mingenes) & 
(st$lengths <= job.msea$maxgenes))
pos <- match(job.msea$moddata$MODULE, st$labels[mask])
job.msea$moddata <- job.msea$moddata[which(pos > 0),]

## Construct hierarchical representation for modules, genes, and markers:
ngens <- length(job.msea$genes) 
nmods <- length(job.msea$modules)
db <- ssea.prepare.structure(job.msea$moddata, job.msea$gendata, 
nmods, ngens)
## Determine test cutoffs:
if(is.null(job.msea$quantiles)) {
lengths <- db$modulelengths
mu <- median(lengths[which(lengths > 0)])
job.msea$quantiles <- seq(0.5, (1.0 - 1.0/mu), length.out=10)
}
## Calculate hit counts:
nloci <- length(job.msea$loci)
hits <- ssea.prepare.counts(job.msea$locdata, nloci, job.msea$quantiles)
db <- c(db, hits)

## Remove the temporary files used for the test:
file.remove("subsetof.coexpr.modules.txt")
file.remove("subsetof.genfile.txt")
file.remove("subsetof.marfile.txt")

Run the code above in your browser using DataLab