Learn R Programming

MetFns (version 2.0)

pop.index: Calculation of population index

Description

Calculates and plots population index of a meteor shower for a given magnitude data, specified period of days, magnitude values and bin size.

Usage

pop.index(data,year,month.beg,month.end=month.beg,day.beg,day.end=day.beg,
time.beg=0,time.end=2359,shw,mag.range=-6:7,k,add.plot=FALSE,xlim1=NULL,
xlim2=NULL,xinc=NULL,ylim1=NULL,ylim2=NULL,yinc=NULL)

Arguments

data
data frame consisting of visual meteor magnitude data.
year
numeric vector of length 4 specifying year.
month.beg
numeric vector specifying the beginning month.
month.end
numeric vector specifying the ending month. By default, month.end is set to be equal to month.beg.
day.beg
numeric vector specifying the beginning day.
day.end
numeric vector specifying the ending day. By default, day.end is set to be equal to day.beg.
time.beg
numeric vector (0-2359) specifying lower boundary of time in hours and minutes, corresponding to day.beg. By default, time.beg is set to be equal to 0.
time.end
numeric vector(0-2359) specifying upper boundary of time in hours and minutes, corresponding to day.end. By default, time.end is set to be equal to 2359.
shw
character string consisting of three capital letters which represent meteor shower code.
mag.range
numeric vector specifying range of magnitudes. It should consist of at least 5 magnitude classes.
k
numeric vector specifying bin size in degrees of solar longitude.
add.plot
logical vector. If TRUE, the population index is plotted.
xlim1
numeric vector specifying minimum value on x-axis.
xlim2
numeric vector specifying maximum value on x-axis.
xinc
numeric vector specifying increment between labels on x-axis.
ylim1
numeric vector specifying minimum value on y-axis.
ylim2
numeric vector specifying maximum value on y-axis.
yinc
numeric vector specifying increment between labels on y-axis.

Value

  • Data frame containing following vectors [object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

code

xinc,yinc

emph

65%

Details

Probabilities of perception are incorporated in magnitude distributions for each observing interval. Cummulative summarized magnitude distribution Phi(m) is formed by summing cummulative frequencies of all observers for each magnitude class m. Using the relationship for population index r=Phi(m+1)/Phi(m) and substitutiong 0,1,...m magnitudes, equation Phi(m)=Phi(0)r^m (or ln(Phi(m))=ln(Phi(0))+r log(m) in logarithmic form) can be written. Then, population index r is calculated by the method of least squares, for chosen range of magnitude values. Standard error of population index is approximated with sigma_r= r sqrt(sum e_i^2/((n-2)sum_i m_i^2)), where i=1,2,..n, n is number of magnitude values, e_i regression residuals, i=1,2,..n.

References

Koschack R. and Rendtel J. (1990). Determination of spatial number density and mass index from visual meteor observations (1). WGN, Journal of the IMO, 18(2), 44 - 58. Koschack R. and Rendtel J. (1990). Determination of spatial number density and mass index from visual meteor observations (2). WGN, Journal of the IMO, 18(4), 119 - 140. Rendtel J. and Arlt R., editors (2008). IMO Handbook For Meteor Observers. IMO, Potsdam.

See Also

mag.distr,pop.index2,zhr

Examples

Run this code
## calculate and plot population index for observations of 1997 Perseids, time period 
## 28th July to 16th August, radiant elevation higher than 20 degrees,
## total correction smaller than 5, bin size 1 degree
## data(magn97)
## magn<-filter(magn97,year=1997,month.beg=7,month.end=8,day.beg=28,day.end=16,
## shw="PER",h.low=20)
## pop.index(magn,year=1997,month.beg=7,month.end=8,day.beg=28,day.end=16,shw="PER",k=1)

## make graphic of population index
##x-axis limits: min(sollong)=125.5, max(sollong)=143.5
##y-axis limits: min(pop.index-sigma.r)=1.99,max(pop.index+sigma.r)=2.8
## pop.index(magn,year=1997,month.beg=7,month.end=8,day.beg=28,day.end=16,shw="PER",
## k=1,add.plot=TRUE,xlim1=125,xlim2=144,xinc=1,ylim1=1.9,ylim2=2.9,yinc=0.1)

Run the code above in your browser using DataLab