# NOT RUN {
####### DATA SETUP ##########
# Example won't work on tinyMetaObject because it requires real gene names
# Download the needed datasets for processing.
sleData <- getGEOData(c("GSE11909","GSE50635", "GSE39088"))
#Label classes in the datasets
sleData$originalData$GSE50635 <- classFunction(sleData$originalData$GSE50635,
column = "subject type:ch1", diseaseTerms = c("Subject RBP +", "Subject RBP -"))
sleData$originalData$GSE11909_GPL96 <- classFunction(sleData$originalData$GSE11909_GPL96,
column = "Illness:ch1", diseaseTerms = c("SLE"))
sleData$originalData$GSE39088 <- classFunction(sleData$originalData$GSE39088,
column= "disease state:ch1", diseaseTerms=c("SLE"))
#Remove the GPL97 platform that was downloaded
sleData$originalData$GSE11909_GPL97 <- NULL
#Run Meta-Analysis
sleMetaAnalysis <- runMetaAnalysis(sleData, runLeaveOneOutAnalysis = F, maxCores = 1)
#Filter genes
sleMetaAnalysis <- filterGenes(sleMetaAnalysis, isLeaveOneOut = F,
effectSizeThresh = 1, FDRThresh = 0.05)
####### END DATA SETUP ##########
#Note: these are note relevant baits for SLE, just examples
lincsBaitCorr(metaObject = sleMetaAnalysis, filterObject = sleMetaAnalysis$filterResults[[1]],
dataset = "CP", baits = c("NICLOSAMIDE","TYRPHOSTINA9","DISULFIRAM","SU4312","RESERPINE"))
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab