parameter.estimate(sp, method, alpha = NULL, nsnap)
spom
:
create.parameter.df
. This will return a data frame with the same structure as the first two methods.create.parameter.df
can be used to create the data frame of the basic spom parameters. Other required parameters can be directly given as arguments to the iterate.graph
, spom
or range_expansion
functions.
The application of the Moilanen paper considers the kernel 'op1', connectivity 'op1', colonization 'op1' and extinction 'op1'. This SPOM (Stochastic Patch Occupancy Model) is known as Incidence Function Model (Hanski,1994 and 1999). In the original version of the mode b=1.However this might be an useful parameter as it scales emigration with patch area. This parameter can be estimated with field data. Moilanen (1998) obtained the value for this parameter by regressing the patch area with known population size.Hanski, I. (1999). Metapopulation Ecology. Oxford University Press. 313 pp.
Hanski, I., Alho, J. and Moilanen, A. (2000) Estimating the parameters of survival and migration of individuals in metapopulations. Ecology, 81, 239-251.
Moilanen, A. (1998). Long-term dynamics in a metapopulation of the American Pika. The American Naturalist, 152(4), 530-542.
Moilanen, A. (1999). Patch occupancy models of metapopulation dynamics: efficient parameter estimation using implicit statistical inference. Ecology, 80(3): 1031-1043. Oksanen, J. (2004). Incidence Function Model in R. url.:. http://cc.oulu.fi/~jarioksa/opetus/openmeta/metafit.pdf.
ter Braak, C. J., & Etienne, R. S. (2003). Improved Bayesian analysis of metapopulation data with an application to a tree frog metapopulation. Ecology, 84(1): 231-241.
create.parameter.df
, iterate.graph
, range_expansion
and spom
data(occ.landscape)
#Using the Regression of snapshot data:
param1 <- parameter.estimate (sp=occ.landscape, method="Rsnap_1")
Run the code above in your browser using DataLab