spom(sp, a_min, kern, conn, colnz, ext, param_df,
beta1 = NULL, b = 1, c1 = NULL, c2 = NULL, z = NULL, R = NULL)
parameter.estimate
, including:
parameter.estimate
, as a data frame):A Stochastic Patch Occupancy Model (SPOM) is a type of model which models the occupancy status of the species on habitat patches as a Markov chain (Moilanen, 2004). These models are a good compromise between capturing sufficient biological detail and being easy to parametrize with occupancy data. With SPOMs it is possible to predict the probability of extinction or colonization of every patch in a landscape, given the current occupancy state of all the patches (Etienne et al. 2004).
Dispersal Kernel
Option 1 (Hanski, 1994 and 1999) $$D(D_{ij},\alpha) = exp(-\alpha.d_{ij})$$
Option 2 (Shaw, 1995) $$D(D_{ij},\alpha,\beta) = \frac{1}{1+\alpha.d_{ij}^\beta}$$
where dij is the distance between patches i and j.
Connectivity
Option 1 (Moilanen, 2004) $$S_i=\sum pj.D(d_{ij},\alpha).A_j^b$$
Option 2 (Moilanen and Nieminen, 2002) $$S_i=A_i^c \sum p_j.D(d_{ij},\alpha).A_j^b$$
where Ai and Aj are the areas of patches i(focal patch) and j(other patches), respectively; dij is the distance between patches i and j and pj is the occupation status (0/1) of patch j
Colonization function
Option 1 (Hanski, 1994, 1999) $$C_i=\frac{S_i^2}{S_i^2+y^2}$$
Option 2 (Moilanen, 2004) $$C_i=1-exp(-y.S_i)$$
Option 3 (Ovaskainen, 2002) $$C_i=\frac{S_i^z}{S_i^z+\frac{1}{c}}$$
where Si is connectivity.
Extinction function
Option 1 (Hanski, 1994, 1999) $$E_i=min(1,\frac{e}{A_i^x})$$
Option 2 (Hanski and Ovaskainen, 2000 and Ovaskainen and Hanski, 2002) $$E_i=1-(\frac{-e}{A_i^x})$$
Option 3 (Ovaskainen, 2002) $$E_i=min[1,\frac{e}{A_i^x}.(1-C_i)^R]$$
where Ai is the area of the focal patch and Ci is the colonization probability of the focal patch.
Hanski, I. (1994). A practical model of metapopulation dynamics. Journal of Animal Ecology, 63: 151-162.
Hanski, I. (1999). Metapopulation Ecology. Oxford University Press. 313 pp.
Hanski, I., Alho, J., and Moilanen, A. (2000). Estimating the parameters of survival and migration of individuals in metapopulations. Ecology, 81(1), 239-251.
Hanski, I., and Ovaskainen, O. (2000). The metapopulation capacity of a fragmented landscape. Nature, 404: 755-758.
Moilanen, A. (2004). SPOMSIM: software for stochastic patch occupancy models of metapopulation dynamics. Ecological Modelling, 179(4), 533-550.
Moilanen, A., and Nieminen, M. (2002). Simple connectivity measures in spatial ecology. Ecology, 83(4): 1131-1145.
Nathan, R., Klein, E., Robledo-Arnuncio, J.J. and Revilla, E. (2012). Dispersal kernels: review. in Clobert, J., Baguette, M., Benton, T. and Bullock, J.M. (Eds.) Dispersal Ecology and Evolution. Oxford University Press. Oxford, UK. 462 pp.
Ovaskainen, O. (2002). The effective size of a metapopulation living in a heterogeneous patch network. The American Naturalist: 160(5), 612-628.
Ovaskainen, O. and Hanski, I. (2001). Spatially structured metapopulation models: global and local assessment of metapopulation capacity. Theoretical Population Biology, 60(4), 281-302.
Ovaskainen, O., and Hanski, I. (2002). Transient dynamics in metapopulation response to perturbation. Theoretical Population Biology, 61(3): 285-295.
Ovaskainen, O. and Hanski, I. (2004). Metapopulation dynamics in highly fragmented landscapes. In Hanski, I. & Gaggiotti, O.E. (Eds.) Ecology, Genetics, and Evolution of Metapopulations. Elsevier Academic Press. 696 pp.
Shaw, M.W., (1995). Simulation of population expansion and spatial pattern when individual dispersal distributions do not decline exponentially with distance. Proc. R. Soc. London B: 259, 243-248.
species.graph
, simulate_graph
, iterate.graph
data(occ.landscape)
data(param1)
#Simulating the occupation in the next time step:
landscape2 <- spom(sp=occ.landscape,
a_min=0,
kern='op1',
conn='op1',
colnz='op1',
ext='op1',
param_df=param1,
beta1=NULL,
b=1,
c1=NULL,
c2=NULL,
z=NULL,
R=NULL
)
#The output has two new columns in the data frame nodes.characteristics: species2
#(occupation in the next time step) and turn (turnover - change of occupation status,
#1 if changed and 0 if not).:
head(landscape2)
# x y areas radius cluster colour nneighbour
#1 718.5011 228.47190 0.05741039 13.518245 1 #FF0000FF 91.80452
#2 494.3624 73.29165 0.08755563 16.694257 1 #FF0000FF 98.98432
#3 809.2326 245.90046 0.09384384 17.283351 1 #FF0000FF 166.68205
#4 638.8057 149.35122 0.08858989 16.792569 1 #FF0000FF 82.60306
#5 874.2010 19.78104 0.03621793 10.737097 1 #FF0000FF 92.26625
#6 605.3937 70.34944 0.03066018 9.878987 1 #FF0000FF 131.22261
# ID species species2 turn
#1 1 1 1 0
#2 2 0 1 1
#3 3 1 1 0
#4 4 0 0 0
#5 5 0 1 1
#6 6 1 1 0
Run the code above in your browser using DataLab