
Last chance! 50% off unlimited learning
Sale ends in
Calculate acceptance rates of parameters in the IFM.
accept.calculate(x, model = c("naive", "missing", "robust"))
Named list containing MCMC chain acceptance rates. Names are built from the input list, e.g., for model=``naive":
Acceptance rates of parameter b
Acceptance rates of parameter e
Acceptance rates of parameter y
Acceptance rates of parameter alpha
Acceptance rates of parameter x
A named list with the MCMC chains estimated by ifm.naive.MCMC, ifm.missing.MCMC, or ifm.robust.MCMC.
Either "naive", "missing", or "robust"
Benjamin Risk
data(simulatedifm)
# Here, we run a chain with random initial values:
init1=list(alpha=runif(1,1,30), b=runif(1,0,5),y=runif(1,0,20),e=runif(1,0,1),x=runif(1,0,5))
inm1 <- ifm.naive.MCMC(niter=1000,init=init1,z.data =
z.sim,site.distance=sim.distance,site.area=sim.area,
sd.prop.alpha=4,sd.prop.b=0.6,sd.prop.y=40,sd.prop.e=0.05,sd.prop.x=0.4,nthin=1,print.by=100)
accept.calculate(inm1,model='naive')
Run the code above in your browser using DataLab