Learn R Programming

MetaPCA (version 0.1.3)

prostate: 4 prostate cancer studies

Description

4 prostate cancer studies comparing three classes: normal, primary, metastasis. lllll{ Data Name Published Year Array Platform Sample Size GEO Accession ID Lapointe 2004 cDNA 112 GSE3933 Yu 2004 HG-U95Av2 108 GSE6919 Varambally 2005 HG-U133 Plus 2 19 GSE3325 Tomlins 2007 cDNA 76 GSE6099 }

Usage

prostate

Arguments

format

A list containing 4 matrices. Each matrix is gene expression data after gene filtering.

source

Gene Expression Omnibus (GEO)

References

Lapointe, J., Li, C., Higgins, J. P., Van De Rijn, M., Bair, E., Montgomery, K., Ferrari, M., Egevad, L., Rayford, W., Bergerheim, U. et al. (2004). Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proceedings of the National Academy of Sciences of the United States of America 101 811.

Yu, Y. P., Landsittel, D., Jing, L., Nelson, J., Ren, B., Liu, L., McDonald, C., Thomas, R., Dhir, R., Finkelstein, S. et al. (2004). Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. Journal of Clinical Oncology 22 2790.

Varambally, S., Yu, J., Laxman, B., Rhodes, D. R., Mehra, R., Tomlins, S. A., Shah, R. B., Chandran, U., Monzon, F. A., Becich, M. J. et al. (2005). Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer cell 8 393-406.

Tomlins, S. A., Mehra, R., Rhodes, D. R., Cao, X., Wang, L., Dhanasekaran, S. M., Kalyana-Sundaram, S., Wei, J. T., Rubin, M. A., Pienta, K. J. et al. (2006). Integrative molecular concept modeling of prostate cancer progression. Nature genetics 39 41-51.