requireAll(c("proto", "foreach"))
## Toy Example
data(brain) #already hugely filtered
#Two default gmt files are automatically downloaded,
#otherwise it is required to locate it correctly.
#Refer to http://www.broadinstitute.org/gsea/downloads.jsp
brainQC <- MetaQC(brain, "c2.cp.biocarta.v3.0.symbols.gmt",
filterGenes=FALSE, verbose=TRUE)
#B is recommended to be >= 1e4 in real application
runQC(brainQC, B=1e2, fileForCQCp="c2.all.v3.0.symbols.gmt")
brainQC
plot(brainQC)
## For parallel computation with only 2 cores
## R >= 2.11.0 in windows to use parallel computing
brainQC <- MetaQC(brain, "c2.cp.biocarta.v3.0.symbols.gmt",
filterGenes=FALSE, verbose=TRUE, isParallel=TRUE, nCores=2)
#B is recommended to be >= 1e4 in real application
runQC(brainQC, B=1e2, fileForCQCp="c2.all.v3.0.symbols.gmt")
plot(brainQC)
## For parallel computation with all cores
## In windows, only 2 cores are used if not specified explicitly
brainQC <- MetaQC(brain, "c2.cp.biocarta.v3.0.symbols.gmt",
filterGenes=FALSE, verbose=TRUE, isParallel=TRUE)
#B is recommended to be >= 1e4 in real application
runQC(brainQC, B=1e2, fileForCQCp="c2.all.v3.0.symbols.gmt")
plot(brainQC)
## Real Example which is used in the paper
#download the brainFull file
#from https://github.com/downloads/donkang75/MetaQC/brainFull.rda
load("brainFull.rda")
brainQC <- MetaQC(brainFull, "c2.cp.biocarta.v3.0.symbols.gmt", filterGenes=TRUE,
verbose=TRUE, isParallel=TRUE)
runQC(brainQC, B=1e4, fileForCQCp="c2.all.v3.0.symbols.gmt") #B was 1e5 in the paper
plot(brainQC)
## Survival Data Example
#download Breast data
#from https://github.com/downloads/donkang75/MetaQC/Breast.rda
load("Breast.rda")
breastQC <- MetaQC(Breast, "c2.cp.biocarta.v3.0.symbols.gmt", filterGenes=FALSE,
verbose=TRUE, isParallel=TRUE, resp.type="Survival")
runQC(breastQC, B=1e4, fileForCQCp="c2.all.v3.0.symbols.gmt")
breastQC
plot(breastQC)Run the code above in your browser using DataLab