# using the provided experimental data
raw <- MetabolomicsBasics::raw
sam <- MetabolomicsBasics::sam
x <- t(raw)
colnames(x) <- sam$GT
gt <- c("B73","B73xMo17","Mo17")
PolarCoordHeterPlot(x=x, gt=gt, plot_lab="graph", thr=0.01, rev_log=exp(1))
coord <- PolarCoordHeterPlot(x=x, gt=gt, thr=0.01, rev_log=exp(1))
points(x=coord$x[3], coord$y[3], pch=22, cex=4, col=2)
# using random data
gt <- c("P1","P1xP2","P2")
set.seed(0)
x <- matrix(rnorm(150), nrow = 10, dimnames = list(paste0("M",1:10), sample(rep(gt, 5))))
x[1:4,1:6]
PolarCoordHeterPlot(x=x, gt=gt)
# using text style labels for the sections
PolarCoordHeterPlot(x=x, gt=gt, plot_lab="text", exp_fac=0.75)
# reverting the order of parental genotypes
PolarCoordHeterPlot(x=x, gt=c("P2","P1xP2","P1"), plot_lab="text", exp_fac=0.75)
# using graph style labels for the sections
PolarCoordHeterPlot(x=x, gt=c("P2","P1xP2","P1"), plot_lab="graph")
# coloring data points
PolarCoordHeterPlot(x=x, gt=gt, col=1:10)
# applying ANOVA P value threshold to input rows
PolarCoordHeterPlot(x=x, gt=gt, col=1:10, thr=0.5)
PolarCoordHeterPlot(x=x, gt=gt, plot_lab="graph", col=1:10, thr=0.5)
Run the code above in your browser using DataLab