dat1 <- data.frame(matrix(rnorm(10000),ncol=10,nrow=1000))
rownames(dat1) <- paste("g", 1:1000, sep="")
colnames(dat1) <- paste("s", 1:10, sep="")
dat2 <- data.frame(matrix(rnorm(10000),ncol=10,nrow=1000))
rownames(dat2) <- paste("g", 1:1000, sep="")
colnames(dat2) <- paste("s", 1:10, sep="")
## run ICA
resJade1 <- runICA(X=dat1, nbComp=3, method = "JADE")
resJade2 <- runICA(X=dat2, nbComp=3, method = "JADE")
## build params
params <- buildMineICAParams(resPath="toy/")
## build IcaSet object
icaSettoy1 <- buildIcaSet(params=params, A=data.frame(resJade1$A), S=data.frame(resJade1$S),
dat=dat1, alreadyAnnot=TRUE)$icaSet
icaSettoy2 <- buildIcaSet(params=params, A=data.frame(resJade2$A), S=data.frame(resJade2$S),
dat=dat2, alreadyAnnot=TRUE)$icaSet
icaSets <- list(icaSettoy1, icaSettoy2)
resCompareAn <- compareAn(icaSets=list(icaSettoy1,icaSettoy2), labAn=c("toy1","toy2"),
type.corr="pearson", level="genes", cutoff_zval=0)
## Build a graph where edges correspond to maximal correlation value (useVal="cor"),
dataGraph <- compareAn2graphfile(listPairCor=resCompareAn, useMax=TRUE, useVal="cor", file="myGraph.txt")
## construction of the data.frame with the node description
nbComp <- rep(3,2) #each IcaSet contains 3 components
nbAn <- 2 # we are comparing 2 IcaSets
# labels of components created as comp*i*
labComp <- foreach(icaSet=icaSets, nb=nbComp, an=1:nbAn) %do% {
paste(rep("comp",sum(nb)),1:nbComp(icaSet),sep = "")}
# creation of the data.frame with the node description
nodeDescr <- nodeAttrs(nbAn = nbAn, nbComp = nbComp, labComp = labComp,
labAn = c("toy1","toy2"), file = "nodeInfo.txt")
## Plot correlation graph, slightly move the attached nodes to make the cliques visible
## use tkplot=TRUE to have an interactive graph
res <- plotCorGraph(title = "Compare toy 1 and 2", dataGraph = dataGraph, nodeName = "indComp", tkplot = FALSE,
nodeAttrs = nodeDescr, edgeWeight = "cor", nodeShape = "labAn", reciproCol = "reciprocal")
## Not run:
# ## load two microarray datasets
# library(breastCancerMAINZ)
# library(breastCancerVDX)
# data(mainz)
# data(vdx)
#
# ## Define a function used to build two examples of IcaSet objects
# treat <- function(es, annot="hgu133a.db") {
# es <- selectFeatures_IQR(es,10000)
# exprs(es) <- t(apply(exprs(es),1,scale,scale=FALSE))
# colnames(exprs(es)) <- sampleNames(es)
# resJade <- runICA(X=exprs(es), nbComp=10, method = "JADE", maxit=10000)
# resBuild <- buildIcaSet(params=buildMineICAParams(), A=data.frame(resJade$A), S=data.frame(resJade$S),
# dat=exprs(es), pData=pData(es), refSamples=character(0),
# annotation=annot, typeID= typeIDmainz,
# chipManu = "affymetrix", mart=mart)
# icaSet <- resBuild$icaSet
# }
# ## Build the two IcaSet objects
# icaSetMainz <- treat(mainz)
# icaSetVdx <- treat(vdx)
#
# icaSets <- list(icaSetMainz, icaSetVdx)
# labAn <- c("Mainz", "Vdx")
#
# ## correlations between gene projections of each pair of IcaSet
# resCompareAn <- compareAn(icaSets = icaSets, level = "genes", type.corr= "pearson",
# labAn = labAn, cutoff_zval=0)
#
# ## construction of the correlation graph using previous output
# dataGraph <- compareAn2graphfile(listPairCor=resCompareAn, useMax=TRUE, file="corGraph.txt")
#
# ## construction of the data.frame with the node description
# nbComp <- rep(10,2) #each IcaSet contains 10 components
# nbAn <- 2 # we are comparing 2 IcaSets
# # labels of components created as comp*i*
# labComp <- foreach(icaSet=icaSets, nb=nbComp, an=1:nbAn) %do% {
# paste(rep("comp",sum(nb)),1:nbComp(icaSet),sep = "")}
#
# # creation of the data.frame with the node description
# nodeDescr <- nodeAttrs(nbAn = nbAn, nbComp = nbComp, labComp = labComp,
# labAn = labAn, file = "nodeInfo.txt")
#
# ## Plot correlation graph, slightly move the attached nodes to make the cliques visible
# res <- plotCorGraph(title = "Compare two ICA decomsitions obtained on \n two
# microarray-based data of breast tumors", dataGraph = dataGraph, nodeName = "indComp",
# nodeAttrs = nodeDescr, edgeWeight = "cor", nodeShape = "labAn", reciproCol = "reciprocal")
#
# ## End(Not run)
Run the code above in your browser using DataLab