runAn(params, icaSet, keepVar, heatmapCutoff = params["selCutoff"], funClus = c("Mclust", "kmeans"), nbClus, clusterOn = "A", keepComp, keepSamples, adjustBy = c("none", "component", "variable"), typePlot = c("boxplot", "density"), mart = useMart(biomart = "ensembl", dataset = "hsapiens_gene_ensembl"), dbGOstats = c("KEGG", "GO"), ontoGOstats = "BP", condGOstats = TRUE, cutoffGOstats = params["pvalCutoff"], writeGenesByComp = TRUE, writeFeaturesByComp = FALSE, selCutoffWrite = 2.5, runVarAnalysis = TRUE, onlySign = T, runClustering = FALSE, runGOstats = TRUE, plotHist = TRUE, plotHeatmap = TRUE)
MineICAParams
containing the parameters of the analysis.IcaSet
.varLabels(icaSet)
).sampleNames(icaSet)
).c("Mclust","kmeans","pam","pamk","hclust","agnes")
.
Default is "Mclust"
.funClus
. Can be missing (default) if
funClus="Mclust"
or funClus="pamk"
.indComp(icaSet)
. If
missing, all components are treated."none"
if no p-value correction has to be
done, "component"
if the p-values have to be
corrected by component, "annotation"
if the
p-values have to be corrected by variableuseMart
GOHyperGParams
.
Only used when argument dbGOstats
is 'GO'.GOHyperGParams
.SByGene(icaSet)
) are written in an
html file and annotated using biomaRt
for each
component.S(icaSet)
) are written in an html
file and annotated using biomaRt
for each
component.GOstats
(default is TRUE).A(icaSet)
) are tested using Wilcoxon or
Kruskal-Wallis tests.qualVarAnalysis,
quantVarAnalysis, clusVarAnalysis
, else all plots are
done.biomaRt
, default is 2.5.runClustering=TRUE
: "A"
:
writeProjByComp
(if
writeGenesByComp=TRUE
or
writeFeaturesByComp
)plot_heatmapsOnSel
(if
plotHeatmap=TRUE
)plotPosAnnotInComp
(if plotHist=TRUE
)pData(icaSet)
.
clusterSamplesByComp
(if
runClustering=TRUE
)
clusVarAnalysis
(if
runClustering=TRUE
)pData(icaSet)
, and summarizes the
results in an HTML file. runEnrich
(if runGOstats=TRUE
)
qualVarAnalysis
and
quantVarAnalysis
(if
varAnalysis=TRUE
)pData(icaSet)
are differently distributed on
the components, in terms of contribution value. Several directories containing the results of each analysis are created by the function:
A
and the variables.writeProjByComp
,
## Not run:
#
# ## load an example of IcaSet
# data(icaSetCarbayo)
# ## make sure the 'mart' attribute is correctly defined
# mart(icaSetCarbayo) <- useMart(biomart="ensembl", dataset="hsapiens_gene_ensembl")
#
# ## creation of an object of class MineICAParams
# ## here we use a low threshold because 'icaSetCarbayo' is already
# # restricted to the contributing features/genes
# params <- buildMineICAParams(resPath="~/resMineICACarbayotestRunAn/", selCutoff=2, pvalCutoff=0.05)
# require(hgu133a.db)
#
# runAn(params=params, icaSet=icaSetCarbayo)
# ## End(Not run)
Run the code above in your browser using DataLab