# creating example ####
# 1st element ####
# Create a sequence of dates from "2011-01-01" to "2015-12-31"
dates <- seq(as.Date("2011-01-01"), as.Date("2011-03-31"), by="day")
# Generate random prices for each date
price_1 <- runif(length(dates), min=0, max=100)
# Combine the dates and prices into a data frame
df <- data.frame(Dates = dates, Price_a = price_1)
# Create a sequence of dates from "2016-02-01" to "2022-12-31"
dates2 <- seq(as.Date("2011-05-01"), as.Date("2011-12-31"), by="day")
# Generate random prices for each date
price_2 <- runif(length(dates2), min=0, max=100)
# Combine the dates and prices into a data frame
df2 <- data.frame(Dates = dates2, Price_a = price_2)
# Merge the two data frames row-wise
df <- rbind(df, df2)
# Create a sequence of dates from "2016-02-01" to "2022-12-31"
dates3 <- seq(as.Date("2012-02-01"), as.Date("2012-12-31"), by="day")
# Generate random prices for each date
price_3 <- runif(length(dates3), min=0, max=100)
# Combine the dates and prices into a data frame
df3 <- data.frame(Dates = dates3, Price_a = price_3)
# Merge the two data frames row-wise
df <- rbind(df, df3)
# Create a sequence of dates from "2016-02-01" to "2022-12-31"
dates4 <- seq(as.Date("2013-04-01"), as.Date("2022-12-31"), by="day")
# Generate random prices for each date
price_4 <- runif(length(dates4), min=0, max=100)
# Combine the dates and prices into a data frame
df4 <- data.frame(Dates = dates4, Price_a = price_4)
# Merge the two data frames row-wise
df <- rbind(df, df4)
# Specify column data types
df <- data.frame(Dates = as.Date(df$Dates),
price_a = round(as.numeric(df$Price_a)))
# 2nd element ####
# Create a sequence of dates from "2011-01-01" to "2015-12-31"
dates <- seq(as.Date("2011-01-01"), as.Date("2011-05-31"), by="day")
# Generate random prices for each date
price_1 <- runif(length(dates), min=0, max=100)
# Combine the dates and prices into a data frame
df_second <- data.frame(Dates = dates, Price_b = price_1)
# Create a sequence of dates from "2016-02-01" to "2022-12-31"
dates2 <- seq(as.Date("2011-06-01"), as.Date("2011-10-31"), by="day")
# Generate random prices for each date
price_2 <- runif(length(dates2), min=0, max=100)
# Combine the dates and prices into a data frame
df_second2 <- data.frame(Dates = dates2, Price_b = price_2)
# Merge the two data frames row-wise
df_second <- rbind(df_second, df_second2)
# Create a sequence of dates from "2016-02-01" to "2022-12-31"
dates3 <- seq(as.Date("2012-01-01"), as.Date("2012-12-31"), by="day")
# Generate random prices for each date
price_3 <- runif(length(dates3), min=0, max=100)
# Combine the dates and prices into a data frame
df_second3 <- data.frame(Dates = dates3, Price_b = price_3)
# Merge the two data frames row-wise
df_second <- rbind(df_second, df_second3)
# Create a sequence of dates from "2016-02-01" to "2022-12-31"
dates4 <- seq(as.Date("2013-03-01"), as.Date("2022-12-31"), by="day")
# Generate random prices for each date
price_4 <- runif(length(dates4), min=0, max=100)
# Combine the dates and prices into a data frame
df_second4 <- data.frame(Dates = dates4, Price_b = price_4)
# Merge the two data frames row-wise
df_second <- rbind(df_second, df_second4)
# Specify column data types
df_second <- data.frame(Dates = as.Date(df_second$Dates),
price_b = round(as.numeric(df_second$Price_b)))
# my_list ####
# Create a list
my_list <- list()
# Add the data frame to the list
my_list$df <- df
my_list$df_second <- df_second
# getting output ####
my_combined_data <- clean_and_combine(my_list = my_list)
print(head(my_combined_data))
my_imputed_data <- impute_combined(my_combined_data)
print(head(my_imputed_data))
Run the code above in your browser using DataLab