Learn R Programming

MixSim (version 1.0-4)

pdplot: Parallel Distribution Plot

Description

Constructs a parallel distribution plot for Gaussian finite mixture models.

Usage

pdplot(Pi, Mu, S, file = NULL, Nx = 5, Ny = 5, MaxInt = 1, marg = c(2,1,1,1))

Arguments

Pi
vector of mixing proportions.
Mu
matrix consisting of components' mean vectors (K * p).
S
set of components' covariance matrices (p * p * K).
file
name of .pdf-file.
Nx
number of color levels for smoothing along the x-axis.
Ny
number of color levels for smoothing along the y-axis.
MaxInt
maximum color intensity.
marg
plot margins.

Details

If 'file' is specified, produced plot will be saved as a .pdf-file.

References

Maitra, R. and Melnykov, V. (2010) ``Simulating data to study performance of finite mixture modeling and clustering algorithms'', The Journal of Computational and Graphical Statistics, 2:19, 354-376.

Melnykov, V., Chen, W.-C., and Maitra, R. (2012) ``MixSim: An R Package for Simulating Data to Study Performance of Finite Mixture Modeling and Clustering Algorithms'', Journal of Statistical Software, (submitted).

See Also

MixSim, overlap, and simdataset.

Examples

Run this code
data("iris", package = "datasets")
p <- ncol(iris) - 1
id <- as.integer(iris[, 5])
K <- max(id)

# estimate mixture parameters
Pi <- prop.table(tabulate(id))
Mu <- t(sapply(1:K, function(k){ colMeans(iris[id == k, -5]) }))
S <- sapply(1:K, function(k){ var(iris[id == k, -5]) })
dim(S) <- c(p, p, K)

pdplot(Pi = Pi, Mu = Mu, S = S)

Run the code above in your browser using DataLab