MixedPoisson-package:
Mixed Poisson Models
Description
The package provides functions, which support to fit parameters of different mixed Poisson models using the Expectation-Maximization (EM) algorithm of estimation, cf. (Ghitany et al., 2012, pp. 6848). In the model the assumptions are: conditional $N|\theta$ is of distribution $N|\theta \sim POIS(\lambda\theta)$, parameter $\theta$ is a random variable distributed according to the density function $f_{\theta}(\cdot)$, $E[\theta]=1$ and $\lambda=\exp(\mathbf{x}_{i}'\mathbf{\boldsymbol \beta})$ -- the regression component. The E-step is carried out through the numerical integration using Laquerre quadrature. The M-step estimates the parameters $\beta$ using GLM Poisson with pseudo values from E-step and mixing parameters using optimize function.
Details
Package: |
MixedPoisson |
Type: |
Package |
Version: |
1.0 |
Date: |
2015-07-13 |
License: |
GPL-2 |
References
Karlis, D. (2005). EM algorithm for mixed Poisson and other discrete distributions. Astin Bulletin, 35(01), 3-24.
Ghitany, M. E., Karlis, D., Al-Mutairi, D. K., & Al-Awadhi, F. A. (2012). An EM algorithm for multivariate mixed Poisson regression models and its application. Applied Mathematical Sciences, 6(137), 6843-6856.