Learn R Programming

MixtureInf (version 1.1)

pmle.binom: compute the PMLE or MLE of the parameters under a mixture of binomials

Description

Compute the PMLE or MLE of the parameters under a mixture of binomials. When the level of penalty is 0, PMLE reduces to MLE.

Usage

pmle.binom(x, size, m0 = 1, lambda = 0, inival=NULL, len = 10, niter = 50, tol = 1e-06, rformat = FALSE)

Arguments

x
data, can be either a vector or a matrix with the 1st column being the observed values and the 2nd column being the corresponding frequencies.
size
number of trials.
m0
order of the finite mixture model, default value: m0 = 1.
lambda
level of penalty, default value: lambda = 0.
inival
initial values for the EM-algorithm, a 2m0-dimension vector including m0 mixing proportions and m0 component parameters, or a matrix with 2m0 columns, default value: inival = NULL. (if not provided, random initial values are used.)
len
number of random initial values for the EM-algorithm, default value: len = 10.
niter
number of iterations for all initial values in the EM-algorithm. The algorithm runs EM-iteration niter times from each initial value. The iteration will restart from the parameter value with the highest likelihood value at the point and run until convergence. default value: niter = 50.
tol
tolerance level for the convergence of the EM-algorithm, default value: tol = 1e-6.
rformat
form of the digital output: default of R package is used when rformat = T; If rformat = T, the digital output is rounded to the 3rd dicimal place if it is larger than 0.001, keeps 3 significant digits otherwise. The default value of rformat is F.

Value

Return the PMLE or MLE of the parameters with order = m0 (mixing proportions and component parameters), log-likelihood value at the PMLE or MLE and the penalized log-likelihood value at the PMLE.

See Also

emtest.binom, plotmix.binom, rmix.binom

Examples

Run this code
#load the residual2 data set,
#fit a 2 component binomial mixture model.
data(residual2)
pmle.binom(residual2,12,2,1)

Run the code above in your browser using DataLab