Learn R Programming

MoBPS (version 1.13.1)

breeding.diploid: Breeding function

Description

Function to simulate a step in a breeding scheme

Usage

breeding.diploid(
  population,
  selection.size = 0,
  selection.criteria = NULL,
  selection.m.gen = NULL,
  selection.f.gen = NULL,
  selection.m.database = NULL,
  selection.f.database = NULL,
  selection.m.cohorts = NULL,
  selection.f.cohorts = NULL,
  max.selection.fullsib = Inf,
  max.selection.halfsib = Inf,
  class.m = 0,
  class.f = 0,
  add.class.cohorts = TRUE,
  multiple.bve = "add",
  selection.index.weights.m = NULL,
  selection.index.weights.f = NULL,
  selection.index.scale.m = NULL,
  selection.index.scale.f = NULL,
  selection.index.kinship = 0,
  selection.index.gen = NULL,
  selection.index.database = NULL,
  selection.index.cohorts = NULL,
  selection.highest = TRUE,
  ignore.best = 0,
  best.selection.ratio.m = 1,
  best.selection.ratio.f = NULL,
  best.selection.criteria.m = "bv",
  best.selection.criteria.f = NULL,
  best.selection.manual.ratio.m = NULL,
  best.selection.manual.ratio.f = NULL,
  best.selection.manual.reorder = TRUE,
  selection.m.random.prob = NULL,
  selection.f.random.prob = NULL,
  reduced.selection.panel.m = NULL,
  reduced.selection.panel.f = NULL,
  threshold.selection.index = NULL,
  threshold.selection.value = NULL,
  threshold.selection.sign = ">",
  threshold.selection.criteria = NULL,
  threshold.selection = NULL,
  threshold.sign = ">",
  remove.duplicates = TRUE,
  selection.m.miesenberger = FALSE,
  selection.f.miesenberger = NULL,
  selection.miesenberger.reliability.est = "derived",
  miesenberger.trafo = 0,
  sort.selected.pos = FALSE,
  ogc = FALSE,
  relationship.matrix.ogc = "pedigree",
  depth.pedigree.ogc = 7,
  ogc.target = "min.sKin",
  ogc.uniform = NULL,
  ogc.ub = NULL,
  ogc.lb = NULL,
  ogc.ub.sKin = NULL,
  ogc.lb.BV = NULL,
  ogc.ub.BV = NULL,
  ogc.eq.BV = NULL,
  ogc.ub.sKin.increase = NULL,
  ogc.lb.BV.increase = NULL,
  ogc.c1 = NULL,
  ogc.isCandidate = NULL,
  ogc.plots = TRUE,
  ogc.weight = NULL,
  ogc.freq = NULL,
  selection.skip = FALSE,
  breeding.size = 0,
  breeding.size.litter = NULL,
  name.cohort = NULL,
  breeding.sex = NULL,
  breeding.sex.random = FALSE,
  sex.s = NULL,
  add.gen = 0,
  share.genotyped = 0,
  phenotyping.child = NULL,
  fixed.effects.p = NULL,
  fixed.effects.freq = NULL,
  new.class = 0L,
  max.offspring = Inf,
  max.offspring.individual.m = NULL,
  max.offspring.individual.f = NULL,
  max.offspring.individual.gen = NULL,
  max.offspring.individual.database = NULL,
  max.offspring.individual.cohorts = NULL,
  max.litter = Inf,
  max.mating.pair = Inf,
  avoid.mating.fullsib = FALSE,
  avoid.mating.halfsib = FALSE,
  avoid.mating.parent = FALSE,
  avoid.mating.inb = NULL,
  avoid.mating.inb.quantile = NULL,
  avoid.mating.inb.min = 0,
  avoid.mating.kinship = NULL,
  avoid.mating.kinship.quantile = NULL,
  avoid.mating.kinship.gen = NULL,
  avoid.mating.kinship.database = NULL,
  avoid.mating.kinship.cohorts = NULL,
  avoid.mating.kinship.min = 0,
  avoid.mating.kinship.median = FALSE,
  avoid.mating.depth.pedigree = 7,
  avoid.mating.remove = FALSE,
  avoid.mating.ignore = 0,
  avoid.mating.resampling = 1000,
  fixed.breeding = NULL,
  fixed.breeding.best = NULL,
  fixed.breeding.id = NULL,
  fixed.assignment = FALSE,
  breeding.all.combination = FALSE,
  repeat.mating = NULL,
  repeat.mating.copy = NULL,
  repeat.mating.fixed = NULL,
  repeat.mating.overwrite = TRUE,
  repeat.mating.trait = 1,
  repeat.mating.max = NULL,
  repeat.mating.s = NULL,
  same.sex.activ = FALSE,
  same.sex.sex = 0.5,
  same.sex.selfing = FALSE,
  selfing.mating = FALSE,
  selfing.sex = 0.5,
  dh.mating = FALSE,
  dh.sex = 0.5,
  combine = FALSE,
  copy.individual = FALSE,
  copy.individual.m = FALSE,
  copy.individual.f = FALSE,
  copy.individual.keep.bve = TRUE,
  copy.individual.keep.pheno = TRUE,
  added.genotyped = NULL,
  bv.ignore.traits = NULL,
  generation.cores = NULL,
  generation.core.make.small = FALSE,
  pedigree.error = 0,
  pedigree.unknown = 0,
  genotyped.database = NULL,
  genotyped.gen = NULL,
  genotyped.cohorts = NULL,
  genotyped.share = 1,
  genotyped.array = 1,
  genotyped.remove.gen = NULL,
  genotyped.remove.database = NULL,
  genotyped.remove.cohorts = NULL,
  genotyped.remove.all.copy = TRUE,
  genotyped.selected = FALSE,
  phenotyping = NULL,
  phenotyping.gen = NULL,
  phenotyping.cohorts = NULL,
  phenotyping.database = NULL,
  n.observation = NULL,
  phenotyping.class = NULL,
  heritability = NULL,
  repeatability = NULL,
  multiple.observation = FALSE,
  phenotyping.selected = FALSE,
  share.phenotyped = 1,
  offpheno.parents.gen = NULL,
  offpheno.parents.database = NULL,
  offpheno.parents.cohorts = NULL,
  offpheno.offspring.gen = NULL,
  offpheno.offspring.database = NULL,
  offpheno.offspring.cohorts = NULL,
  sigma.e = NULL,
  sigma.e.gen = NULL,
  sigma.e.cohorts = NULL,
  sigma.e.database = NULL,
  new.residual.correlation = NULL,
  new.breeding.correlation = NULL,
  phenotyping.trafo.parameter = NULL,
  bve = FALSE,
  bve.gen = NULL,
  bve.cohorts = NULL,
  bve.database = NULL,
  relationship.matrix = "GBLUP",
  depth.pedigree = 7,
  singlestep.active = TRUE,
  bve.ignore.traits = NULL,
  bve.array = NULL,
  bve.imputation = TRUE,
  bve.imputation.errorrate = 0,
  bve.all.genotyped = FALSE,
  bve.insert.gen = NULL,
  bve.insert.cohorts = NULL,
  bve.insert.database = NULL,
  variance.correction = "none",
  bve.class = NULL,
  sigma.g = NULL,
  sigma.g.gen = NULL,
  sigma.g.cohorts = NULL,
  sigma.g.database = NULL,
  forecast.sigma.g = NULL,
  remove.effect.position = FALSE,
  estimate.add.gen.var = FALSE,
  estimate.pheno.var = FALSE,
  bve.avoid.duplicates = TRUE,
  calculate.reliability = FALSE,
  estimate.reliability = FALSE,
  bve.input.phenotype = "own",
  mas.bve = FALSE,
  mas.markers = NULL,
  mas.number = 5,
  mas.effects = NULL,
  mas.geno = NULL,
  bve.parent.mean = FALSE,
  bve.grandparent.mean = FALSE,
  bve.mean.between = "bvepheno",
  bve.exclude.fixed.effects = NULL,
  bve.beta.hat.approx = TRUE,
  bve.per.sample.sigma.e = TRUE,
  bve.p_i.list = NULL,
  bve.p_i.gen = NULL,
  bve.p_i.database = NULL,
  bve.p_i.cohorts = NULL,
  bve.p_i.exclude.nongenotyped = FALSE,
  bve.use.all.copy = FALSE,
  bve.pedigree.error = TRUE,
  mobps.bve = TRUE,
  mixblup.bve = FALSE,
  blupf90.bve = FALSE,
  mixblup.reliability = FALSE,
  emmreml.bve = FALSE,
  rrblup.bve = FALSE,
  sommer.bve = FALSE,
  sommer.multi.bve = FALSE,
  BGLR.bve = FALSE,
  pseudo.bve = FALSE,
  pseudo.bve.accuracy = 1,
  bve.solve = "exact",
  mixblup.jeremie = FALSE,
  mixblup.hpblup = FALSE,
  mixblup.pedfile = TRUE,
  mixblup.parfile = TRUE,
  mixblup.datafile = TRUE,
  mixblup.inputfile = TRUE,
  mixblup.genofile = TRUE,
  mixblup.path = NULL,
  mixblup.path.pedfile = NULL,
  mixblup.path.parfile = NULL,
  mixblup.path.datafile = NULL,
  mixblup.path.inputfile = NULL,
  mixblup.path.genofile = NULL,
  mixblup.full.path.genofile = NULL,
  mixblup.files = "MiXBLUP_files",
  mixblup.verbose = TRUE,
  blupf90.verbose = TRUE,
  mixblup.genetic.cov = NULL,
  mixblup.residual.cov = NULL,
  mixblup.lambda = 1,
  mixblup.alpha = NULL,
  mixblup.beta = NULL,
  mixblup.omega = NULL,
  mixblup.maxit = 5000,
  mixblup.stopcrit = NULL,
  mixblup.maf = 0.005,
  mixblup.numproc = NULL,
  mixblup.apy = FALSE,
  mixblup.apy.core = NULL,
  mixblup.ta = FALSE,
  mixblup.tac = FALSE,
  mixblup.skip = FALSE,
  blupf90.skip = FALSE,
  mixblup.restart = FALSE,
  mixblup.nopeek = FALSE,
  mixblup.calcinbr.s = FALSE,
  mixblup.multiple.records = FALSE,
  mixblup.attach = FALSE,
  mixblup.debug = FALSE,
  mixblup.plink = FALSE,
  mixblup.cleanup = Inf,
  blupf90.pedfile = TRUE,
  blupf90.parfile = TRUE,
  blupf90.datafile = TRUE,
  blupf90.inputfile = TRUE,
  blupf90.genofile = TRUE,
  mixblup.dgv = FALSE,
  mixblup.dgv.freq = NULL,
  mixblup.dgv.effect = NULL,
  blupf90.path = NULL,
  renumf90.path = NULL,
  blupf90.path.pedfile = NULL,
  blupf90.path.parfile = NULL,
  blupf90.path.datafile = NULL,
  blupf90.path.inputfile = NULL,
  blupf90.path.genofile = NULL,
  blupf90.files = "blupf90_files",
  blupf90.blksize = NULL,
  blupf90.no.quality = FALSE,
  blupf90.conv_crit = NULL,
  BGLR.model = "RKHS",
  BGLR.burnin = 500,
  BGLR.iteration = 5000,
  BGLR.print = TRUE,
  BGLR.save = "RKHS",
  BGLR.save.random = FALSE,
  miraculix = NULL,
  miraculix.cores = 1,
  miraculix.mult = NULL,
  miraculix.chol = TRUE,
  miraculix.destroyA = TRUE,
  estimate.u = FALSE,
  fast.uhat = TRUE,
  gwas.u = FALSE,
  approx.residuals = TRUE,
  gwas.gen = NULL,
  gwas.cohorts = NULL,
  gwas.database = NULL,
  gwas.group.standard = FALSE,
  y.gwas.used = "pheno",
  gene.editing.offspring = FALSE,
  gene.editing.best = FALSE,
  gene.editing.offspring.sex = TRUE,
  gene.editing.best.sex = TRUE,
  nr.edits = 0,
  culling.non.selected = FALSE,
  culling.gen = NULL,
  culling.database = NULL,
  culling.cohorts = NULL,
  culling.type = 0,
  culling.time = Inf,
  culling.name = "Not_named",
  culling.bv1 = 0,
  culling.share1 = NULL,
  culling.bv2 = NULL,
  culling.share2 = NULL,
  culling.index = 0,
  culling.single = TRUE,
  culling.all.copy = TRUE,
  mutation.rate = 10^-8,
  remutation.rate = 10^-8,
  recombination.rate = 1,
  recombination.rate.trait = 0,
  recombination.function = NULL,
  recombination.minimum.distance = NULL,
  recombination.distance.penalty = NULL,
  recombination.distance.penalty.2 = NULL,
  recom.f.indicator = NULL,
  import.position.calculation = NULL,
  duplication.rate = 0,
  duplication.length = 0.01,
  duplication.recombination = 1,
  gen.architecture.m = 0,
  gen.architecture.f = NULL,
  add.architecture = NULL,
  intern.func = 0,
  delete.haplotypes = NULL,
  delete.recombi = NULL,
  delete.recombi.only.non.genotyped = FALSE,
  delete.recombi.class = NULL,
  delete.individuals = NULL,
  delete.gen = NULL,
  delete.sex = 1:2,
  delete.same.origin = FALSE,
  save.recombination.history = FALSE,
  store.sparse = FALSE,
  storage.save = 1.05,
  verbose = TRUE,
  report.accuracy = TRUE,
  store.breeding.totals = FALSE,
  store.bve.data = FALSE,
  store.comp.times = TRUE,
  store.comp.times.bve = TRUE,
  store.comp.times.generation = TRUE,
  store.effect.freq = FALSE,
  Rprof = FALSE,
  randomSeed = NULL,
  display.progress = NULL,
  time.point = 0,
  age.point = NULL,
  creating.type = 0,
  import.relationship.matrix = NULL,
  export.selected = FALSE,
  export.selected.database = FALSE,
  export.relationship.matrix = FALSE,
  pen.assignments = NULL,
  pen.size = NULL,
  pen.by.sex = TRUE,
  pen.by.litter = FALSE,
  pen.size.overwrite = TRUE,
  selection.m = NULL,
  selection.f = NULL,
  new.bv.observation.gen = NULL,
  new.bv.observation.cohorts = NULL,
  new.bv.observation.database = NULL,
  best1.from.group = NULL,
  best2.from.group = NULL,
  best1.from.cohort = NULL,
  best2.from.cohort = NULL,
  new.bv.observation = NULL,
  reduce.group = NULL,
  reduce.group.selection = "random",
  new.bv.child = NULL,
  computation.A = NULL,
  computation.A.ogc = NULL,
  new.phenotype.correlation = NULL,
  offspring.bve.parents.gen = NULL,
  offspring.bve.parents.database = NULL,
  offspring.bve.parents.cohorts = NULL,
  offspring.bve.offspring.gen = NULL,
  offspring.bve.offspring.database = NULL,
  offspring.bve.offspring.cohorts = NULL,
  input.phenotype = NULL,
  multiple.bve.weights.m = 1,
  multiple.bve.weights.f = NULL,
  multiple.bve.scale.m = "bv_sd",
  multiple.bve.scale.f = NULL,
  use.recalculate.manual = NULL,
  recalculate.manual.subset = 5000,
  compute.grandparent.contribution = FALSE,
  size.scaling = NULL,
  parallel.internal = FALSE,
  varg = FALSE,
  gain.stats = FALSE,
  next.id = NULL,
  copy.individual.use = NULL,
  copy.individual.use2 = NULL
)

Value

Population-list

Arguments

population

Population list

selection.size

Number of selected individuals as parents (default: all individuals in selection.m/f.gen/database/gen - alt: positive numbers)

selection.criteria

What to use in the selection process (default: "bve", alt: "bv", "pheno", "random", "offpheno")

selection.m.gen, selection.m.cohorts, selection.m.database

Generations/cohorts/groups available for selection of first/paternal parent

selection.f.gen, selection.f.cohorts, selection.f.database

Generations available for selection of maternal parent

max.selection.fullsib

Maximum number of individual to select from the same family (same sire & dam)

max.selection.halfsib

Maximum number of individual to select from the same family (same sire or same dam)

class.m, class.f

For selection only individuals from this class (included in selection.m/f.gen/database/cohorts) will be considered for selection (default: 0 - which is all individuals if never used class elsewhere)

add.class.cohorts

Initial classes of cohorts used in selection.m/f.cohorts are automatically added to class.m/f (default: TRUE)

multiple.bve

Way to handle multiple traits in selection (default: "add" - use values directly in an index, alt: "ranking" - ignore values but only use ranking per trait)

selection.index.weights.m, selection.index.weights.f

Weighting between traits (default: 1)

selection.index.scale.m, selection.index.scale.f

Default: "bv_sd"; Set to "pheno_sd" when using gains per phenotypic SD, "unit" when using gains per unit, "bve" when using estimated breeding values

selection.index.kinship

Include avg. kinship to a reference population (selection.index.gen/database/cohorts) as part of the selection index (Default: 0)

selection.index.gen, selection.index.database, selection.index.cohorts

Generation/cohorts/groups to use as a reference of the kinship value in the selection index

selection.highest

If FALSE to select individuals with lowest value for the selection criterium (default c(TRUE,TRUE) - (m,w))

ignore.best

Not consider the top individuals of the selected individuals (e.g. to use 2-10 best individuals)

best.selection.ratio.m, best.selection.ratio.f

Ratio of the frequency of the selection of the best best individual and the worst best individual (default=1)

best.selection.criteria.m, best.selection.criteria.f

Criteria to calculate this ratio (default: "bv", alt: "bve", "pheno")

best.selection.manual.ratio.m, best.selection.manual.ratio.f

vector containing probability to draw from for every individual (e.g. c(0.1,0.2,0.7))

best.selection.manual.reorder

Set to FALSE to not use the order from best to worst selected individual but plain order based on database-order

selection.m.random.prob, selection.f.random.prob

Use this parameter to control the probability of each individual to be selected when doing random selection

reduced.selection.panel.m, reduced.selection.panel.f

Use only a subset of individuals of the potential selected ones ("Split in user-interface")

threshold.selection.index

Selection index on which to access (matrix which one index per row)

threshold.selection.value

Minimum value in the selection index selected individuals have to have

threshold.selection.sign

Pick all individuals above (">") the threshold. Alt: ("<", "=", "<=", ">=")

threshold.selection.criteria

Criterium on which to evaluate the index (default: "bve", alt: "bv", "pheno")

threshold.selection

Minimum value in the selection index selected individuals have to have

threshold.sign

Pick all individuals above (">") the threshold. Alt: ("<", "=", "<=", ">=")

remove.duplicates

Set to FALSE to select the same individual multiple times when the gen/database/cohorts for selection contains it multiple times

selection.m.miesenberger, selection.f.miesenberger

Use Weighted selection index according to Miesenberger 1997 for paternal/maternal selection

selection.miesenberger.reliability.est

If available reliability estimated are used. If not use default: "derived" (cor(BVE,BV)^2) , alt: "heritability", "estimated" (SD BVE / SD Pheno) as replacement

miesenberger.trafo

Ignore all eigenvalues below this threshold and apply dimension reduction (default: 0 - use all)

sort.selected.pos

Set to TRUE to arrange selected individuals according to position in the database (not by breeding value)

ogc

If TRUE use optimal genetic contribution theory to perform selection ( This requires the use of the R-package optiSel)

relationship.matrix.ogc

Method to calculate relationship matrix for OGC (Default: "pedigree", alt: "vanRaden", "CE", "non_stand", "CE2", "CM")

depth.pedigree.ogc

Depth of the pedigree in generations (default: 7)

ogc.target

Target of OGC (default: "min.sKin" - minimize inbreeding; alt: "max.BV" / "min.BV" - maximize genetic gain; both under constrains selected below)

ogc.uniform

This corresponds to the uniform constrain in optiSel

ogc.ub

This corresponds to the ub constrain in optiSel

ogc.lb

This corresponds to the lb constrain in optiSel

ogc.ub.sKin

This corresponds to the ub.sKin constrain in optiSel

ogc.lb.BV

This corresponds to the lb.BV constrain in optiSel

ogc.ub.BV

This corresponds to the ub.BV constrain in optiSel

ogc.eq.BV

This corresponds to the eq.BV constrain in optiSel

ogc.ub.sKin.increase

This corresponds to the upper bound (current sKin + ogc.ub.sKin.increase) as ub.sKin in optiSel

ogc.lb.BV.increase

This corresponds to the lower bound (current BV + ogc.lb.BV.increase) as lb.BV in optiSel

ogc.c1

Only applicable when TN-version of OGC is available

ogc.isCandidate

Only applicable when TN-version of OGC is available

ogc.plots

Only applicable when TN-version of OGC is available

ogc.weight

Only applicable when B4F-version of OGC is available

ogc.freq

Only applicable when B4F-version of OGC is available

selection.skip

Set to FALSE in case no selection of individuals should be performed (just skips some unneccessary computations)

breeding.size

Number of individuals to generate (default: 0, use vector with two entries to control offspring per sex)

breeding.size.litter

Number of litters to generate (default: NULL - use breeding.size; only single positive number input allowed)

name.cohort

Name of the newly added cohort

breeding.sex

Share of female individuals (if single value is used for breeding size; default: 0.5)

breeding.sex.random

If TRUE randomly chose sex of new individuals (default: FALSE - use expected values)

sex.s

Specify which newly added individuals are male (1) or female (2)

add.gen

Generation you want to add the new individuals to (default: New generation)

share.genotyped

Share of individuals newly generated individuals that are genotyped (Default: 0). Also applies if individuals are copied with copy.individual

phenotyping.child

Starting phenotypes of newly generated individuals (default: "zero", alt: "mean" of both parents, "obs" - regular observation)

fixed.effects.p

Parametrization for the fixed effects (default: c(0,0..,0), if multiple different parametrizations are possible use a matrix with one parametrization per row)

fixed.effects.freq

Frequency of each different parametrization of the fixed effects

new.class

Migration level of newly generated individuals (default: 0 / use vector for different classes for different sexes)

max.offspring

Maximum number of offspring per individual (default: c(Inf,Inf) - (m,w))

max.offspring.individual.m, max.offspring.individual.f

Vector with maximum number of offspring for first/second parent (default: NULL). Order in the vector by order of selection

max.offspring.individual.gen

matrix with first column generation with limited number offspring, second column number of allowed offspring

max.offspring.individual.database

matrix with first four columns database with limited number offspring, fifth column number of allowed offspring

max.offspring.individual.cohorts

matrix with first column cohort with limited number offspring, second column number of allowed offspring

max.litter

Maximum number of litters per individual (default: c(Inf,Inf) - (m,w))

max.mating.pair

Maximum number of matings between two specific individuals (default: Inf)

avoid.mating.fullsib

Set to TRUE to not generate offspring of full siblings

avoid.mating.halfsib

Set to TRUE to not generate offspring from half or full siblings

avoid.mating.parent

Set to TRUE to not generate offspring from parent / sibling matings

avoid.mating.inb

Maximum allowed expected inbreeding to allow a mating combination (based on kinships)

avoid.mating.inb.quantile

Use this to not perform mating between more related potential parents (quantile of all expected inbreeding levels)

avoid.mating.inb.min, avoid.mating.kinship.min

Share of mating to at minimum perform for each individual (default: 0)

avoid.mating.kinship

Maximum allowed expected kinship of an offspring to a reference group of individuals

avoid.mating.kinship.quantile

Maximum allowed expected kinship of an offspring to a reference group of individuals

avoid.mating.kinship.gen, avoid.mating.kinship.database, avoid.mating.kinship.cohorts

Gen/database/cohorts of individuals to consider as a reference pool in avoid.mating.kinship

avoid.mating.kinship.median

Set to TRUE to use median kinship instead of mean kinship in avoid.mating.kinship (default: FALSE)

avoid.mating.depth.pedigree

Depth of the pedigree to calculate expected inbreeding levels / kinships

avoid.mating.remove

Set to TRUE to automatically exclude any selected individuals from the sample of parents

avoid.mating.ignore

Set to value higher 0 for avoid.mating.inb/kinship restrictions to not always be applied

avoid.mating.resampling

Number of sampling attempts to avoid unwanted matings (( last couple of individuals otherwise can have unwanted relatedness, default = 1000))

fixed.breeding

Set of targeted matings to perform (matrix with 7 columns: database position first parent (gen, sex, nr), database position second parent (gen,sex,nr), likelihood to be female (optional))

fixed.breeding.best

Perform targeted matings in the group of selected individuals (matrix with 5 columns: position first parent (male/female pool of selected individuals, ranking in selected animals), position second parent (male/female pool of selected individuals, ranking in selected animals), likelihood to be female (optional))

fixed.breeding.id

Set of target matings to perform (matrix with 3 columns: id first parent, id second parent, likelihood to be female (optional))

fixed.assignment

Set to "bestbest" / TRUE for targeted mating of best-best individual till worst-worst (of selected). set to "bestworst" for best-worst mating

breeding.all.combination

Set to TRUE to automatically perform each mating combination possible exactly ones.

repeat.mating

Generate multiple mating from the same dam/sire combination (first column: number of offspring; second column: probability)

repeat.mating.copy

Generate multiple copies from a copy action (combine / copy.individual.m/f) (first column: number of offspring; second column: probability)

repeat.mating.fixed

Vector containing number of times each mating is repeated. This will overwrite sampling from repeat.mating / repeat.mating.copy (default: NULL)

repeat.mating.overwrite

Set to FALSE to not use the current repeat.mating / repeat.mating.copy input as the new standard values (default: TRUE)

repeat.mating.trait

Trait that should be linked to the litter size

repeat.mating.max

Maximum number of individuals in a litter

repeat.mating.s

Use this parameter to manually provide the size of each litter generated

same.sex.activ

If TRUE allow matings of individuals of same sex (Sex here is a general term with the first sex referring to the first parent, second sex second parent)

same.sex.sex

Probability to use female individuals as parents (default: 0.5)

same.sex.selfing

Set to TRUE to allow for selfing when using same.sex matings (default: FALSE)

selfing.mating

If TRUE generate new individuals via selfing

selfing.sex

Share of female individuals used for selfing (default: 0.5)

dh.mating

If TRUE generate a DH-line in mating process

dh.sex

Share of DH-lines generated from selected female individuals

combine

Copy existing individuals (e.g. to merge individuals from different groups in a joined cohort). Individuals to use are used as the first parent

copy.individual

Set TRUE to generate a copy of an already existing individual. If only one of the sexes has individuals to select from it will automatically detect with sex to chose. Otherwise the first/male parent will be copied

copy.individual.m, copy.individual.f

If TRUE generate exactly one copy of all selected male/female in a new cohort (or more by setting breeding.size)

copy.individual.keep.bve

Set to FALSE to not keep estimated breeding value in case of use of copying individuals instead of regular meiosis

copy.individual.keep.pheno

Set to FALSE to not keep phenotypes in case of use of copying individuals instead of regular meiosis

added.genotyped

(OLD! use share.genotyped) Share of individuals that is additionally genotyped (only for copy.individual, default: 0)

bv.ignore.traits

Vector of traits to ignore in the calculation of the genomic value (default: NULL; Only recommended for high number of traits and experienced users!)

generation.cores

Number of cores used for the generation of new individuals (This will only be active when generating more than 500 individuals)

generation.core.make.small

Set to TRUE to delete not necessary individuals during parallelization

pedigree.error

Share of errors in the pedigree (default: 0; vector with two entries for errors on male/female side)

pedigree.unknown

Share of individuals with unknown parents (default: 0; vector with two entries for differences in unknown-share between male/female side)

genotyped.gen, genotyped.cohorts, genotyped.database

Generations/cohorts/groups to generate genotype data (that can be used in a BVE)

genotyped.share

Share of individuals in genotyped.gen/database/cohort to generate genotype data from (default: 1)

genotyped.array

Genotyping array used

genotyped.remove.gen, genotyped.remove.database, genotyped.remove.cohorts

Generations/cohorts/groups from which to remove genotyping information (this will affect all copies of an individual unless genotyped.remove.all.copy is set to FALSE)

genotyped.remove.all.copy

Set to FALSE to only change the genotyping state of this particular copy of an individual (default: TRUE)

genotyped.selected

Set to TRUE to genotype all selected individuals

phenotyping

Quick access to phenotyping for (all: "all", non-phenotyped: "non_obs", non-phenotyped male: "non_obs_m", non-phenotyped female: "non_obs_f")

phenotyping.gen, phenotyping.cohorts, phenotyping.database

Generations/cohorts/groups from which to generate additional phenotypes

n.observation

Number of phenotypic observations generated per trait and per individuals (use repeatability to control correlation between observations)

phenotyping.class

Classes of individuals for which to generate phenotypes (default: NULL --> all classes)

heritability

Use sigma.e to obtain a certain heritability (default: NULL)

repeatability

Set this to control the share of the residual variance (sigma.e) that is permanent (there for each observation)

multiple.observation

If an already phenotyped trait is phenotyped again this will on NOT lead to an additional phenotyped observation unless this is set to TRUE

phenotyping.selected

Set to TRUE to phenotype all selected individuals

share.phenotyped

Share of the individuals to phenotype (use vector for different probabilities for different traits)

offpheno.parents.gen, offpheno.parents.database, offpheno.parents.cohorts

Generations/groups/cohorts to consider to derive phenotype from offspring phenotypes

offpheno.offspring.gen, offpheno.offspring.cohorts, offpheno.offspring.database

Active generations/cohorts/groups for import of offspring phenotypes

sigma.e

Enviromental standard deviation (default: use sigma.e from last run / usually fit by use of heritability; if never provided: 10; used in BVE for variance components if manually set)

sigma.e.gen, sigma.e.cohorts, sigma.e.database

Generations/cohorts/groups to consider when estimating sigma.e when using heritability

new.residual.correlation

Correlation of the simulated residual variance

new.breeding.correlation

Correlation of the simulated genetic variance (only impacts non-QTL based traits. Needs to be fit in creating.diploid/trait for QTL-based traits)

phenotyping.trafo.parameter

Additional input parameter for phenotypic transformation function

bve

If TRUE perform a breeding value estimation (default: FALSE)

bve.gen, bve.cohorts, bve.database

Generations/Groups/Cohorts of individuals to consider in breeding value estimation (default: NULL)

relationship.matrix

Method to calculate relationship matrix for the breeding value estimation. This will automatically chosen between GBLUP, ssGBLUP, pBLUP based on if genotyped individuals are available (Default: "GBLUP", alt: "pedigree", "CE", "non_stand", "CE2", "CM")

depth.pedigree

Depth of the pedigree in generations (default: 7)

singlestep.active

Set FALSE remove all individuals without genomic data from the breeding value estimation

bve.ignore.traits

Vector of traits to ignore in the breeding value estimation (default: NULL, use: "zero" to not consider traits with 0 index weight in selection.index.weights.m/.w)

bve.array

Array to use in the breeding value estimation (default: NULL; chose largest possible based on used individuals in BVE)

bve.imputation

Set to FALSE to not perform imputation up to the highest marker density of genotyping data that is available

bve.imputation.errorrate

Share of errors in the imputation procedure (default: 0)

bve.all.genotyped

Set to TRUE to act as if every individual in the breeding value estimation has been genotyped

bve.insert.gen, bve.insert.cohorts, bve.insert.database

Generations/Groups/Cohorts of individuals to compute breeding values for (default: all groups in bve.database)

variance.correction

Correct for "parental.mean" or "generation.mean" in the estimation of sigma.g for BVE / sigma.e estimation (default: "none")

bve.class

Consider only individuals of those class classes in breeding value estimation (default: NULL - use all)

sigma.g

Genetic standard deviation (default: calculated based on individuals in BVE ; used in BVE for variance components if manually set; mostly recommended to be used for non-QTL based traits)

sigma.g.gen, sigma.g.cohorts, sigma.g.database

Generations/cohorts/groups to consider when estimating sigma.g

forecast.sigma.g

Set FALSE to not estimate sigma.g (Default: TRUE // in case sigma.g is set this is automatically set to FALSE)

remove.effect.position

If TRUE remove real QTLs in breeding value estimation

estimate.add.gen.var

If TRUE estimate additive genetic variance and heritability based on parent model

estimate.pheno.var

If TRUE estimate total variance in breeding value estimation

bve.avoid.duplicates

If set to FALSE multiple generations of the same individual can be used in the bve (only possible by using copy.individual to generate individuals)

calculate.reliability

Set TRUE to calculate a reliability when performing Direct-Mixed-Model BVE

estimate.reliability

Set TRUE to estimate the reliability in the BVE by calculating the correlation between estimated and real breeding values

bve.input.phenotype

Select what to use in BVE (default: own phenotype ("own"), offspring phenotype ("off"), their average ("mean") or a weighted average ("weighted"))

mas.bve

If TRUE use marker assisted selection in the breeding value estimation

mas.markers

Vector containing markers to be used in marker assisted selection

mas.number

If no markers are provided this nr of markers is selected (if single marker QTL are present highest effect markers are prioritized)

mas.effects

Effects assigned to the MAS markers (Default: estimated via lm())

mas.geno

Genotype dataset used in MAS (default: NULL, automatic internal calculation)

bve.parent.mean

Set to TRUE to use the average parental performance as the breeding value estimate

bve.grandparent.mean

Set to TRUE to use the average grandparental performance as the breeding value estimate

bve.mean.between

Select if you want to use the "bve", "bv", "pheno" or "bvepheno" to form the mean (default: "bvepheno" - if available bve, else pheno)

bve.exclude.fixed.effects

Vector of fixed effects to ignore in the BVE (default: NULL)

bve.beta.hat.approx

Set to FALSE to use the true underlying value for beta_hat for the fixed effect in the direct BVE model. rrBLUP, BGLR, sommer will always estimate beta_hat.

bve.per.sample.sigma.e

Set to FALSE to deactivate the use of a heritability based on the number of observations generated per sample

bve.p_i.list

Vector of allele frequencies to be used when calculating the genomic relationship matrix (default: calculate them based on Z)

bve.p_i.gen, bve.p_i.database, bve.p_i.cohorts

Generations/cohorts/groups to use when manually calculating allele frequencies for genomic relationship matrix

bve.p_i.exclude.nongenotyped

Set to TRUE to exclude non-genotyped individuals when calculating allele frequencies for genomic relationship matrix standardization

bve.use.all.copy

Set to TRUE to use phenotypes and genotyped status from all copies of an individual instead of just the provided ones in the bve.gen/database/cohorts (default: FALSE)

bve.pedigree.error

Set to FALSE to ignore/correct for any pedigree errors

mobps.bve

If TRUE predict BVEs in direct estimation with assumed known heritability (default: TRUE; activating use of any other BVE method to TRUE will overwrite this)

mixblup.bve

Set to TRUE to activate breeding value estimation via MiXBLUP (requires MiXBLUP license!)

blupf90.bve

Set to TRUE to activate breeding value estimation via BLUPF90 (requires blupf90 software!)

mixblup.reliability

Set to TRUE to activate breeding value estimation via MiXBLUP (requires MiXBLUP license!)

emmreml.bve

If TRUE use REML estimator from R-package EMMREML in breeding value estimation

rrblup.bve

If TRUE use REML estimator from R-package rrBLUP in breeding value estimation

sommer.bve

If TRUE use REML estimator from R-package sommer in breeding value estimation

sommer.multi.bve

Set TRUE to use a multi-trait model in the R-package sommer for BVE

BGLR.bve

If TRUE use BGLR to perform breeding value estimation

pseudo.bve

If set to TRUE the breeding value estimation will be simulated with resulting accuracy pseudo.bve.accuracy (default: 1)

pseudo.bve.accuracy

The accuracy to be obtained in the "pseudo" - breeding value estimation

bve.solve

Provide solver to be used in BVE (default: "exact" solution via inversion, alt: "pcg", function with inputs A, b and output y_hat)

mixblup.jeremie

Set to TRUE to use Jeremies suggested MiXBLUP settings

mixblup.hpblup

Set to TRUE to use hpblup in MiXBLUP (default: FALSE)

mixblup.pedfile

Set to FALSE to manually generate your MiXBLUP pedfile

mixblup.parfile

Set to FALSE to manually generate your MiXBLUP parfile

mixblup.datafile

Set to FALSE to manually write your MiXBLUP datafile

mixblup.inputfile

Set to FALSE to manually write your MiXBLUP inputfile

mixblup.genofile

Set to FALSE to manually write the MiXBLUP genotypefile

mixblup.path

Provide path to MiXBLUP.exe (default is your working directory: Windows: MixBLUP; Linux ./MixBLUP.exe)

mixblup.path.pedfile

Path from where to import the MiXBLUP pedfile

mixblup.path.parfile

Path from where to import the MiXBLUP parfile

mixblup.path.datafile

Path from where to import the MiXBLUP datafile

mixblup.path.inputfile

Path from where to import the MiXBLUP inputfile

mixblup.path.genofile

Path from where to import the MiXBLUP genofile

mixblup.full.path.genofile

Path from where to import the MiXBLUP genofile

mixblup.files

Directory to generate all files generated when using MiXBLUP (default: MiXBLUP_files/ )

mixblup.verbose

Set to TRUE to display MiXBLUP prints

blupf90.verbose

Set to TRUE to display blupf90 prints

mixblup.genetic.cov

Provide genetic covariance matrix to be used in MiXBLUP (lower-triangle is sufficent) (default: underlying true values)

mixblup.residual.cov

Provide residual covariance matrix to be used in MiXBLUP (lower-triangle is sufficent) (default: underlying true values)

mixblup.lambda

Lambda parameter in MiXBLUP (default: 1)

mixblup.alpha

Alpha parameter in MiXBLUP (default: 0.95, with alpha + beta = 1 , warning: MiXBLUP software this is 1)

mixblup.beta

Beta parameter in MiXBLUP (default: 0.05, with alpha + beta = 1 , warning: MiXBLUP software this is 0)

mixblup.omega

Omega parameter in MiXBLUP (default: mixblup.lambda)

mixblup.maxit

!Maxit qualifier in MiXBLUP (default: 5.000)

mixblup.stopcrit

!STOPCRIT qualifier in MiXBLUP (default: not used, suggested value 1.E-4 for ssGBLUP) // will overwrite maxit

mixblup.maf

!MAF qualifier in MiXBLUP (default: 0.005)

mixblup.numproc

Numproc parameter in MiXBLUP (default: not set // 1)

mixblup.apy

Set to TRUE to use APY inverse in MiXBLUP (default: FALSE)

mixblup.apy.core

Number of core individuals in the APY algorithm (default: 5000)

mixblup.ta

Set to TRUE to use the !Ta flag in MixBLUP

mixblup.tac

Set to TRUE to use the !TAC flag in MixBLUP

mixblup.skip

Set to TRUE to skip the actually system call to MiXBLUP and only write the MiXBLUP files

blupf90.skip

Set to TRUE to skip the actually system calls of blupf90 and only write the blupf90 input files

mixblup.restart

Set to TRUE to set the !RESTART flag in MiXBLUP (requires a "Solunf" file in the working directory)

mixblup.nopeek

Set to TRUE to set the !NOPEEK flag in MiXBLUP

mixblup.calcinbr.s

Set to TRUE to set the !CalcInbr flag to S

mixblup.multiple.records

Set to TRUE to write multiple phenotypic records for an individual

mixblup.attach

Set TRUE to just extent the existing genotype file instead of writting it completely new

mixblup.debug

Set TRUE to set debugging flags for mixblup call (-Dmst > mixblup_debug.log) (default: FALSE)

mixblup.plink

Set TRUE to write genotype files in PLINK format (requires R-package genio, default: FALSE)

mixblup.cleanup

Delete all mixblup output files above the indicated size after MiXBLUP run completes (default: Inf)

blupf90.pedfile

Set to FALSE to manually generate your MiXBLUP pedfile

blupf90.parfile

Set to FALSE to manually generate your MiXBLUP parfile

blupf90.datafile

Set to FALSE to manually generate your blupf90 datafile

blupf90.inputfile

Set to FALSE to manually write your MiXBLUP inputfile

blupf90.genofile

Set to FALSE to manually write the blupf90 genotypefile

mixblup.dgv

Set TRUE to use DGV-PBLUP (Only applicable with TAC-BLUP)

mixblup.dgv.freq

Path of allele frequency file for DGV-PBLUP

mixblup.dgv.effect

Path of SNP effect file for DGV-PBLUP

blupf90.path

Provide path to blupf90 (default is your working directory: Windows: ./blupf90+.exe ; Linux ./blupf90+.exe)

renumf90.path

Provide path to blupf90 (default is your working directory: Windows: ./renumf90.exe ; Linux ./renumf90.exe)

blupf90.path.pedfile

Path from where to import the blupf90 pedfile

blupf90.path.parfile

Path from where to import the blupf90 parfile

blupf90.path.datafile

Path from where to import the blupf90 data file

blupf90.path.inputfile

Path from where to import the blupf90 inputfile

blupf90.path.genofile

Path from where to import the blupf90 genotype file

blupf90.files

Directory to generate all files generated when using blupf90 (default: blupf90_files/ )

blupf90.blksize

blupf90 parameter blksize (Default: number of traits)

blupf90.no.quality

blupf90 setting OPTION no_quality_control (Default: FALSE)

blupf90.conv_crit

blupf90 parameter conv_crit (Default: blupf90 default)

BGLR.model

Select which BGLR model to use (default: "RKHS", alt: "BRR", "BL", "BayesA", "BayesB", "BayesC")

BGLR.burnin

Number of burn-in steps in BGLR (default: 1000)

BGLR.iteration

Number of iterations in BGLR (default: 5000)

BGLR.print

If TRUE set verbose to TRUE in BGLR

BGLR.save

Method to use in BGLR (default: "RKHS" - alt: NON currently)

BGLR.save.random

Add random number to store location of internal BGLR computations (only needed when simulating a lot in parallel!)

miraculix

If TRUE use miraculix to perform computations (ideally already generate population in creating.diploid with this; default: automatic detection from population list)

miraculix.cores

Number of cores used in miraculix applications (default: 1)

miraculix.mult

If TRUE use miraculix for matrix multiplications even if miraculix is not used for storage

miraculix.chol

Set to FALSE to deactive miraculix based Cholesky-decomposition (default: TRUE)

miraculix.destroyA

If FALSE A will not be destroyed in the process of inversion (less computing / more memory)

estimate.u

If TRUE estimate u in breeding value estimation (Y = Xb + Zu + e)

fast.uhat

Set to FALSE to derive inverse of A in rrBLUP (only required when this becomes numerical unstable otherwise)

gwas.u

If TRUE estimate u via GWAS (relevant for gene editing)

approx.residuals

If FALSE calculate the variance for each marker separatly instead of using a set variance (does not change order - only p-values)

gwas.gen, gwas.cohorts, gwas.database

Generations/cohorts/groups to consider in GWAS analysis

gwas.group.standard

If TRUE standardize phenotypes by group mean

y.gwas.used

What y value to use in GWAS study (Default: "pheno", alt: "bv", "bve")

gene.editing.offspring

If TRUE perform gene editing on newly generated individuals

gene.editing.best

If TRUE perform gene editing on selected individuals

gene.editing.offspring.sex

Which sex to perform editing on (Default c(TRUE,TRUE), mw)

gene.editing.best.sex

Which sex to perform editing on (Default c(TRUE,TRUE), mw)

nr.edits

Number of edits to perform per individual

culling.non.selected

Set TRUE to cull all non-selected individuals (default: FALSE)

culling.gen, culling.cohorts, culling.database

Generations/cohorst/groups to consider to culling

culling.type

Default: 0, can be set to code different type of culling reasons (e.g. 0 - aging, 1 - selection, 2 - health)

culling.time

Age of the individuals at culling // use time.point if the age of individuals is variable and culling is executed on individuals of different ages culled at the same time

culling.name

Name of the culling action (user-interface stuff)

culling.bv1

Reference Breeding value

culling.share1

Probability of death for individuals with bv1

culling.bv2

Alternative breeding value (linear extended for other bvs)

culling.share2

Probability of death for individuals with bv2

culling.index

Genomic index (default:0 - no genomic impact, use: "lastindex" to use the last selection index applied in selection)

culling.single

Set to FALSE to not apply the culling module on all individuals of the cohort

culling.all.copy

Set to FALSE to not kill copies of the same individual in the culling module

mutation.rate

Mutation rate in each marker (default: 10^-8)

remutation.rate

Remutation rate in each marker (default: 10^-8)

recombination.rate

Average number of recombination per 1 length unit (default: 1M)

recombination.rate.trait

Select a trait which BV will be used as a scalar for the expected number of recombination (default: 0)

recombination.function

Function used to calculate position of recombination events (default: MoBPS::recombination.function.haldane())

recombination.minimum.distance

Minimum distance between two points of recombination (default: 0)

recombination.distance.penalty

Reduced probability for recombination events closer than this value - linear penalty (default: 0)

recombination.distance.penalty.2

Reduced probability for recombination events closer than this value - quadratic penalty (default: 0)

recom.f.indicator

Use step function for recombination map (transform snp.positions if possible instead)

import.position.calculation

Function to calculate recombination point into adjacent/following SNP

duplication.rate

Share of recombination points with a duplication (default: 0 - DEACTIVATED)

duplication.length

Average length of a duplication (Exponentially distributed)

duplication.recombination

Average number of recombinations per 1 length uit of duplication (default: 1)

gen.architecture.m, gen.architecture.f

Genetic architecture for male/female individuals (default: 0 - no transformation)

add.architecture

List with two vectors containing (A: length of chromosomes, B: position in cM of SNPs)

intern.func

Chose which function will be used for simulation of meiosis (default: 0, alt: 1,2) - can be faster for specific cases

delete.haplotypes

Generations for with haplotypes of founders can be deleted from population list for memory reduction (default: NULL)

delete.recombi

Generations for which recombination points can be deleted from the population list for memory reduction (default: NULL)

delete.recombi.only.non.genotyped

Set TRUE to only remove points of recombination for non-genotyped individuals

delete.recombi.class

Set TRUE to only remove points of recombination for individuals from a specific class

delete.individuals

Generations for with individuals are completely deleted from population list for memory reduction (default: NULL)

delete.gen

Generations to entirely deleted fro population list for memory reduction (default: NULL)

delete.sex

Remove all individuals from these sex from generation delete.individuals (default: 1:2 ; note:delete individuals=NULL)

delete.same.origin

If TRUE delete recombination points when genetic origin of adjacent segments is the same

save.recombination.history

If TRUE store the time point of each recombination event

store.sparse

Set to TRUE to store the pedigree relationship matrix as a sparse matrix

storage.save

Lower numbers will lead to less memory but slightly higher computing time for calculation of the pedigree relationship matrix (default: 1.5, min: 1)

verbose

Set to FALSE to not display any prints

report.accuracy

Report the accuracy of the breeding value estimation

store.breeding.totals

If TRUE store information on selected individuals in $info$breeding.totals (default: FALSE)

store.bve.data

If TRUE store information of bve in $info$bve.data

store.comp.times

If TRUE store computation times in $info$comp.times.general (default: TRUE)

store.comp.times.bve

If TRUE store computation times of breeding value estimation in $info$comp.times.bve (default: TRUE)

store.comp.times.generation

If TRUE store computation times of mating simulations in $info$comp.times.generation (default: TRUE)

store.effect.freq

If TRUE store the allele frequency of effect markers per generation

Rprof

Store computation times of each function

randomSeed

Set random seed of the process

display.progress

Set FALSE to not display progress bars. Setting verbose to FALSE will automatically deactive progress bars

time.point

Time point at which the new individuals are generated

age.point

Time point at which the new individuals are born (default: time.point - mostly useful in the founder generation)

creating.type

Technique to generate new individuals (use mostly intended for web-based application)

import.relationship.matrix

Input the wanted relationship matrix with this parameter (default: NULL - relationship matrix will be calculated from other sources)

export.selected

Set to TRUE to export the list of selected individuals

export.selected.database

Set to TRUE to export a database of the selected individuals

export.relationship.matrix

Export the relationship matrix used in the breeding value estimation

pen.assignments

This is a placeholder to deactivate this module for now

pen.size

Pen size. When different types of pen are used: use a matrix with two columns coding Number of individuals per pen, Probability for each pen size

pen.by.sex

Only individuals of the same sex are put in the same pen (default: TRUE)

pen.by.litter

Only individuals of the same litter are put in the same pen (default: FALSE)

pen.size.overwrite

Set to FALSE to not use the input for pen.size for down-stream use of breeding.diploid (default: TRUE)

selection.m, selection.f

(OLD! use selection criteria) Selection criteria for male/female individuals (Set to "random" to randomly select individuals - default: "function" based on selection.criteria ((usually breeding values)))

new.bv.observation.gen, new.bv.observation.cohorts, new.bv.observation.database

(OLD! use phenotyping.gen/cohorts/database) Vector of generation from which to generate additional phenotypes

best1.from.group, best1.from.cohort

(OLD!- use selection.m.database/cohorts) Groups of individuals to consider as First Parent / Father (also female individuals are possible)

best2.from.group, best2.from.cohort

(OLD!- use selection.f.database/cohorts) Groups of individuals to consider as Second Parent / Mother (also male individuals are possible)

new.bv.observation

(OLD! - use phenotyping) Quick access to phenotyping for (all: "all", non-phenotyped: "non_obs", non-phenotyped male: "non_obs_m", non-phenotyped female: "non_obs_f")

reduce.group

(OLD! - use culling modules) Groups of individuals for reduce to a new size (by changing class to -1)

reduce.group.selection

(OLD! - use culling modules) Selection criteria for reduction of groups (cf. selection.m / selection.f - default: "random")

new.bv.child

(OLD! - use phenotyping.child) Starting phenotypes of newly generated individuals (default: "zero", alt: "mean" of both parents, "obs" - regular observation)

computation.A

(OLD! - use relationship.matrix) Method to calculate relationship matrix for the breeding value estimation (Default: "vanRaden", alt: "pedigree", "CE", "non_stand", "CE2", "CM")

computation.A.ogc

(OLD! use relationship.matrix.ogc) Method to calculate pedigree matrix in OGC (Default: "pedigree", alt: "vanRaden", "CE", "non_stand", "CE2", "CM")

new.phenotype.correlation

(OLD! - use new.residual.correlation!) Correlation of the simulated enviromental variance

offspring.bve.parents.gen, offspring.bve.parents.cohorts, offspring.bve.parents.database

(OLD! use offpheno.parents.gen/database/cohorts) Generations/cohorts/groups to consider to derive phenotype from offspring phenotypes

offspring.bve.offspring.gen, offspring.bve.offspring.cohorts, offspring.bve.offspring.database

(OLD! use offpheno.offspring.gen/database/cohorts) Active generations/cohorts/groups for import of offspring phenotypes

input.phenotype

(OLD! use bve.input.phenotype) Select what to use in BVE (default: own phenotype ("own"), offspring phenotype ("off"), their average ("mean") or a weighted average ("weighted"))

multiple.bve.weights.m, multiple.bve.weights.f

(OLD! use selection.index.weights.m/f) Weighting between traits (default: 1)

multiple.bve.scale.m, multiple.bve.scale.f

(OLD! use selection.index.scale.m/f) Default: "bv_sd"; Set to "pheno_sd" when using gains per phenotypic SD, "unit" when using gains per unit, "bve" when using estimated breeding values

use.recalculate.manual

Set to TRUE to use recalculate.manual to calculate genomic values (all individuals and traits jointly, default: FALSE)

recalculate.manual.subset

Maximum number of individuals to process at the same time (( genotypes are in memory ))

compute.grandparent.contribution

compute share of genome inherited from each grandparent based on recombination points (default: FALSE)

size.scaling

Set to value to scale all input for breeding.size / selection.size (This will not work for all breeding programs / less general than json.simulation)

parallel.internal

Internal parameter for the parallelization

varg

Experimental parameter for Tobias Niehoff (do not touch!)

gain.stats

Set to FALSE to not compute genetic gains compared to previous generation (selection)

next.id

Id to assign to first next individual generated

copy.individual.use, copy.individual.use2

Use this to skip copying some entries from the internal storage ((minor speed up))

Examples

Run this code
population <- creating.diploid(nsnp=1000, nindi=100)
population <- breeding.diploid(population, breeding.size=100, selection.size=c(25,25))

Run the code above in your browser using DataLab