Learn R Programming

MoTBFs (version 1.4.1)

Learning Hybrid Bayesian Networks using Mixtures of Truncated Basis Functions

Description

Learning, manipulation and evaluation of mixtures of truncated basis functions (MoTBFs), which include mixtures of polynomials (MOPs) and mixtures of truncated exponentials (MTEs). MoTBFs are a flexible framework for modelling hybrid Bayesian networks (I. Prez-Bernab, A. Salmern, H. Langseth (2015) ; H. Langseth, T.D. Nielsen, I. Prez-Bernab, A. Salmern (2014) ; I. Prez-Bernab, A. Fernndez, R. Rum, A. Salmern (2016) ). The package provides functionality for learning univariate, multivariate and conditional densities, with the possibility of incorporating prior knowledge. Structural learning of hybrid Bayesian networks is also provided. A set of useful tools is provided, including plotting, printing and likelihood evaluation. This package makes use of S3 objects, with two new classes called 'motbf' and 'jointmotbf'.

Copy Link

Version

Install

install.packages('MoTBFs')

Monthly Downloads

213

Version

1.4.1

License

LGPL-3

Maintainer

Ana D. Maldonado

Last Published

April 18th, 2022

Functions in MoTBFs (1.4.1)

as.function.jointmotbf

Coerce a "jointmotbf" Object to a Function
MoTBF-Distribution

Random generation for MoTBF distributions
UpperBoundLogLikelihood

Upper bound of the loglikelihood
Class-MoTBF

Class "motbf"
MoTBFs_Learning

Learning hybrid BNs with MoTBFs
BICMoTBF

Computing the BIC score of an MoTBF function
LearningHC

Score-based hybrid Bayesian Network structure learning
Subclass-MoTBF

Subclass "motbf" Functions
Class-JointMoTBF

Class "jointmotbf"
BICMultiFunctions

BIC score for multiple functions
coef.motbf

Extract the coefficients of an MoTBF
coefExpJointCDF

Degree Function
conditionalmotbf.learning

Learning conditional MoTBF densities
dataMining

Data pre-processing utilities
derivMOP

Derivative of a MOP
coef.mop

Extract coefficients from MOPs
coef.jointmotbf

Coefficients of a "jointmotbf" object
goodnessMoTBFBN

BIC of a hybrid BN
goodnessDiscreteVariables

BIC scxore and log-likelihood
derivMTE

Derivating MTEs
derivMoTBF

Derivating MoTBFs
coef.mte

Extracting the coefficients of an MTE
forward_sampling

Forward Sampling
clean

Remove Objects from Memory
findConditional

Find fitted conditional MoTBFs
asMTEString

Converting MTEs to strings
motbf_type

Type of MoTBF
getNonNormalisedRandomMoTBF

Ramdom MoTBF
getCoefficients

Get the coefficients
ecoli

Data set Ecoli: Protein Localization Sites
parentValues

Value of parent nodes
plot.jointmotbf

Bidimensional plots for 'jointmotbf' objects
evalJointFunction

Evaluation of joint MoTBFs
integralMTE

Integrating MTEs
thyroid

Data set Thyroid Disease (thyroid0387)
jointCDF

Joint MoTBFs CDFs
as.function.motbf

Coerce an "motbf" object to a Function
integralMoTBF

Integrating MoTBFs
is.root

Root nodes
univMoTBF

Fitting MoTBFs
generateNormalPriorData

Prior data generation
mte.learning

Fitting mixtures of truncated exponentials.
preprocessedData

Data cleaning
printBN

BN printing
is.discrete

Check discreteness of a node
subsetData

Dataset subsetting
sample_MoTBFs

Sample generation from conditional MoTBFs
jointmotbf.learning

Joint MoTBF density learning
getChildParentsFromGraph

Get the list of relations in a graph
is.observed

Observed Node
newRangePriorData

Redefining the Domain
nVariables

Number of Variables in a Joint Function
asMOPString

Parameters to MOP String
dimensionFunction

Dimension of MoTBFs
discreteStatesFromBN

Get the states of all discrete nodes from a MoTFB-BN
rescaledFunctions

Rescaling MoTBF functions
integralMOP

Integration of MOPs
integralJointMoTBF

Integration with MoTBFs
marginalJointMoTBF

Marginalization of MoTBFs
rnormMultiv

Multivariate Normal sampling
summary.motbf

Summary of an "motbf" object
summary.jointmotbf

Summary of a "jointmotbf" object
printConditional

Summary of conditional MoTBF densities
probDiscreteVariable

Probability distribution of discrete variables
r.data.frame

Data frame initialization for forward sampling
printDiscreteBN

Printing discrete Bayesian networks
mop.learning

Fitting mixtures of polynomials
learnMoTBFpriorInformation

Incorporating prior knowledge in the estimation process
plot.motbf

Plots for 'motbf' objects
plotConditional

Plot Conditional Functions