Learn R Programming

MoTBFs (version 1.4.2)

Learning Hybrid Bayesian Networks using Mixtures of Truncated Basis Functions

Description

Learning, manipulation and evaluation of mixtures of truncated basis functions (MoTBFs), which include mixtures of polynomials (MOPs) and mixtures of truncated exponentials (MTEs). MoTBFs are a flexible framework for modelling hybrid Bayesian networks (I. Pérez-Bernabé, A. Salmerón, H. Langseth (2015) ; H. Langseth, T.D. Nielsen, I. Pérez-Bernabé, A. Salmerón (2014) ; I. Pérez-Bernabé, A. Fernández, R. Rumí, A. Salmerón (2016) ). The package provides functionality for learning univariate, multivariate and conditional densities, with the possibility of incorporating prior knowledge. Structural learning of hybrid Bayesian networks is also provided. A set of useful tools is provided, including plotting, printing and likelihood evaluation. This package makes use of S3 objects, with two new classes called 'motbf' and 'jointmotbf'.

Copy Link

Version

Install

install.packages('MoTBFs')

Monthly Downloads

249

Version

1.4.2

License

LGPL-3

Maintainer

Ana D. Maldonado

Last Published

July 22nd, 2025

Functions in MoTBFs (1.4.2)

dataMining

Data pre-processing utilities
coef.mop

Extract coefficients from MOPs
getCoefficients

Get the coefficients
derivMOP

Derivative of a MOP
goodnessDiscreteVariables

BIC scxore and log-likelihood
getNonNormalisedRandomMoTBF

Ramdom MoTBF
findConditional

Find fitted conditional MoTBFs
forward_sampling

Forward Sampling
goodnessMoTBFBN

BIC of a hybrid BN
generateNormalPriorData

Prior data generation
getChildParentsFromGraph

Get the list of relations in a graph
jointmotbf.learning

Joint MoTBF density learning
learnMoTBFpriorInformation

Incorporating prior knowledge in the estimation process
marginalJointMoTBF

Marginalization of MoTBFs
discreteStatesFromBN

Get the states of all discrete nodes from a MoTFB-BN
mop.learning

Fitting mixtures of polynomials
dimensionFunction

Dimension of MoTBFs
parentValues

Value of parent nodes
plot.jointmotbf

Bidimensional plots for 'jointmotbf' objects
integralMoTBF

Integrating MoTBFs
integralMTE

Integrating MTEs
is.root

Root nodes
derivMoTBF

Derivating MoTBFs
derivMTE

Derivating MTEs
ecoli

Data set Ecoli: Protein Localization Sites
integralJointMoTBF

Integration with MoTBFs
integralMOP

Integration of MOPs
evalJointFunction

Evaluation of joint MoTBFs
is.discrete

Check discreteness of a node
plot.motbf

Plots for 'motbf' objects
is.observed

Observed Node
printConditional

Summary of conditional MoTBF densities
printDiscreteBN

Printing discrete Bayesian networks
motbf_type

Type of MoTBF
preprocessedData

Data cleaning
printBN

BN printing
mte.learning

Fitting mixtures of truncated exponentials.
plotConditional

Plot Conditional Functions
thyroid

Data set Thyroid Disease (thyroid0387)
univMoTBF

Fitting MoTBFs
sample_MoTBFs

Sample generation from conditional MoTBFs
subsetData

Dataset subsetting
rnormMultiv

Multivariate Normal sampling
rescaledFunctions

Rescaling MoTBF functions
summary.motbf

Summary of an "motbf" object
summary.jointmotbf

Summary of a "jointmotbf" object
jointCDF

Joint MoTBFs CDFs
newRangePriorData

Redefining the Domain
nVariables

Number of Variables in a Joint Function
probDiscreteVariable

Probability distribution of discrete variables
r.data.frame

Data frame initialization for forward sampling
BICMoTBF

Computing the BIC score of an MoTBF function
Subclass-MoTBF

Subclass "motbf" Functions
LearningHC

Score-based hybrid Bayesian Network structure learning
Class-JointMoTBF

Class "jointmotbf"
Class-MoTBF

Class "motbf"
UpperBoundLogLikelihood

Upper bound of the loglikelihood
BICMultiFunctions

BIC score for multiple functions
MoTBFs_Learning

Learning hybrid BNs with MoTBFs
as.function.jointmotbf

Coerce a "jointmotbf" Object to a Function
coef.jointmotbf

Coefficients of a "jointmotbf" object
as.function.motbf

Coerce an "motbf" object to a Function
conditionalmotbf.learning

Learning conditional MoTBF densities
coefExpJointCDF

Degree Function
MoTBF-Distribution

Random generation for MoTBF distributions
coef.mte

Extracting the coefficients of an MTE
clean

Remove Objects from Memory
coef.motbf

Extract the coefficients of an MoTBF
asMTEString

Converting MTEs to strings
asMOPString

Parameters to MOP String