###########################################################################
############################# Run this set up code: #######################
###########################################################################
# set seed:
seed=38
# Define training and test files:
qdata.trainfn = system.file("external", "helpexamples","DATATRAIN.csv", package = "ModelMap")
# Define folder for all output:
folder=getwd()
#identifier for individual training and test data points
unique.rowname="ID"
##################################################################
########## Continuous Response, Continuous Predictors ############
##################################################################
#file names:
MODELfn.RF="RF_Bio_TC"
MODELfn.SGB="SGB_Bio_TC"
#predictors:
predList=c("TCB","TCG","TCW")
#define which predictors are categorical:
predFactor=FALSE
# Response name and type:
response.name="BIO"
response.type="continuous"
########## Build Models #################################
model.obj.RF = model.build( model.type="RF",
qdata.trainfn=qdata.trainfn,
folder=folder,
unique.rowname=unique.rowname,
MODELfn=MODELfn.RF,
predList=predList,
predFactor=predFactor,
response.name=response.name,
response.type=response.type,
seed=seed
)
model.obj.SGB = model.build( model.type="SGB",
qdata.trainfn=qdata.trainfn,
folder=folder,
unique.rowname=unique.rowname,
MODELfn=MODELfn.SGB,
predList=predList,
predFactor=predFactor,
response.name=response.name,
response.type=response.type,
seed=seed+1
)
############## Make Imortance Plot - RF vs. SGB ###################
model.importance.plot( model.obj.1=model.obj.RF,
model.obj.2=model.obj.SGB,
model.name.1="RF Model",
model.name.2="SGB Model",
scale.by="sum",
sort.by="predList",
predList=predList,
main="RF verses SGB",
device.type="default")
########## Make Imortance Plot - RF Importance type 1 vs 2 #######
model.importance.plot( model.obj.1=model.obj.RF,
model.obj.2=model.obj.RF,
model.name.1="PercentIncMSE",
model.name.2="IncNodePurity",
imp.type.1=1,
imp.type.2=2,
scale.by="sum",
sort.by="predList",
predList=predList,
main="Imp type 1 vs Imp type 2",
device.type="default")
##################################################################
########## Categorical Response, Continuous Predictors ###########
##################################################################
#file name:
MODELfn="RF_NLCD_TC"
#predictors:
predList=c("TCB","TCG","TCW")
#define which predictors are categorical:
predFactor=FALSE
# Response name and type:
response.name="NLCD"
response.type="categorical"
########## Build Model #################################
model.obj.NLCD = model.build( model.type="RF",
qdata.trainfn=qdata.trainfn,
folder=folder,
unique.rowname=unique.rowname,
MODELfn=MODELfn,
predList=predList,
predFactor=predFactor,
response.name=response.name,
response.type=response.type,
seed=seed)
############## Make Imortance Plot ###################
model.importance.plot( model.obj.1=model.obj.NLCD,
model.obj.2=model.obj.NLCD,
model.name.1="NLCD=41",
model.name.2="NLCD=42",
class.1="41",
class.2="42",
scale.by="sum",
sort.by="predList",
predList=predList,
main="Class 41 vs. Class 42",
device.type="default")Run the code above in your browser using DataLab