Learn R Programming

⚠️There's a newer version (1.2.2.2) of this package.Take me there.

ModelMetrics: Rapid Calculation of Model Metrics

Tyler Hunt thunt@snapfinance.com

Introduction

ModelMetrics is a much faster and reliable package for evaluating models. ModelMetrics is written in using Rcpp making it faster than the other packages used for model metrics.

Installation

You can install this package from CRAN:

install.packages("ModelMetrics")

Or you can install the development version from Github with devtools:

devtools::install_github("JackStat/ModelMetrics")

Benchmark and comparison

N = 100000
Actual = as.numeric(runif(N) > .5)
Predicted = as.numeric(runif(N))

actual = Actual
predicted = Predicted

s1 <- system.time(a1 <- ModelMetrics::auc(Actual, Predicted))
s2 <- system.time(a2 <- Metrics::auc(Actual, Predicted))
# Warning message:
# In n_pos * n_neg : NAs produced by integer overflow
s3 <- system.time(a3 <- pROC::auc(Actual, Predicted))
s4 <- system.time(a4 <- MLmetrics::AUC(Predicted, Actual))
# Warning message:
# In n_pos * n_neg : NAs produced by integer overflow
s5 <- system.time({pp <- ROCR::prediction(Predicted, Actual); a5 <- ROCR::performance(pp, 'auc')})


data.frame(
  package = c("ModelMetrics", "pROC", "ROCR")
  ,Time = c(s1[[3]],s3[[3]],s5[[3]])
)

# MLmetrics and Metrics could not calculate so they are dropped from time comparison
#        package   Time
# 1 ModelMetrics  0.030
# 2         pROC 50.359
# 3         ROCR  0.358

Copy Link

Version

Install

install.packages('ModelMetrics')

Monthly Downloads

85,641

Version

1.2.2

License

GPL (>= 2)

Maintainer

Tyler Hunt

Last Published

November 3rd, 2018

Functions in ModelMetrics (1.2.2)

confusionMatrix

Confusion Matrix
logLoss

Log Loss
mae

Mean absolute error
ppv

Positive Predictive Value
recall

Recall, Sensitivity, tpr
mauc

Multiclass Area Under the Curve
msle

Mean Squared Log Error
npv

Negative Predictive Value
f1Score

F1 Score
mcc

Matthews Correlation Coefficient
fScore

F Score
mlogLoss

Multiclass Log Loss
gini

GINI Coefficient
mse

Mean Square Error
kappa

kappa statistic
testDF

Test data
auc

Area Under the Curve
tnr

Specificity, True negative rate
brier

Brier Score
rmse

Root-Mean Square Error
rmsle

Root Mean Squared Log Error
ce

Classification error