# set up a generic RPART model
rpart.mod <- Modeler(learnRPART, predictRPART, minsplit=2, minbucket=1)
# simulate fake data
data <- matrix(rnorm(100*20), ncol=20)
status <- factor(rep(c("A", "B"), each=10))
# learn the specific RPART model
fm <- learn(rpart.mod, data, status)
# show the predicted results from the model on the trianing data
predict(fm)
# set up a nearest neighbor model
knn.mod <- Modeler(learnKNN, predictKNN, k=3)
# fit the 3NN model on the same data
fm3 <- learn(knn.mod, data, status)
# show its performance
predict(fm3)
Run the code above in your browser using DataLab