data("alligator")
alligator_data <- process_measurements(alligator,
pos = "Vertebra")
# Compute PCOs
alligator_PCO <- svdPCO(alligator_data)
# Select which PCOs to use
## Manually (first 4 PCOs)
(PCOs <- PCOselect(alligator_PCO, "manual", scores = 4))
## Using variance cutoff: PCOs that explain 5% or more
## of total PCO variance
(PCOs <- PCOselect(alligator_PCO, "variance", cutoff = .05))
## Using bootstrapping with 50 reps (more reps should
## be used in practice; default is fine)
(PCOs <- PCOselect(alligator_PCO, "boot", nreps = 50))
plot(PCOs) #plot true eigenvalues against bootstrapped
## Using PCOs that optimize region score:
regionresults <- calcregions(alligator_PCO, scores = 1:21, noregions = 7,
minvert = 3, cont = TRUE, exhaus = TRUE,
verbose = FALSE)
(PCOs <- PCOselect(alligator_PCO, "max",
results = regionresults,
criterion = "bic"))
plot(PCOs)
summary(PCOs)
Run the code above in your browser using DataLab