Learn R Programming

MultBiplotR (version 23.11.0)

BinaryLogBiplotGD: Binary Logistic Biplot with Gradient Descent Estimation

Description

Binary Logistic Biplot with Gradient Descent Estimation. An external optimization function is used to calculate the parameters.

Usage

BinaryLogBiplotGD(X, freq = matrix(1, nrow(X), 1), dim = 2, tolerance =
                   1e-07, penalization = 0.01, num_max_iters = 100,
                   RotVarimax = FALSE, seed = 0, OptimMethod = "CG",
                   Initial = "random", Orthogonalize = FALSE, Algorithm =
                   "Joint", ...)

Value

An object of class "Binary.Logistic.Biplot".

Arguments

X

A binary data matrix

freq

Frequencies of each row. When adequate.

dim

Dimension of the final solution.

tolerance

Tolerance for convergence of the algorithm.

penalization

Ridge penalization constant.

num_max_iters

Maximum number of iterations of the algorithm.

RotVarimax

Should the final solution be rotated.

seed

Seed for the random numbers. Used for reproductibility.

OptimMethod

Optimization method used by optim.

Initial

Initial configuration to start the iterations.

Orthogonalize

Should te solution be orthogonalized?.

Algorithm

Algorithm for esimation: Joint or alternated.

...

Aditional parameters used by the optimization function.

Author

Jose Luis Vicente-Villardon

Details

Fits a binary logistic biplot using gradient descent. The general function optim is used to optimize the loss function. Conjugate gradien is used as a default although other alternatives can be USED.

References

Vicente-Villardon, J. L., Galindo, M. P. and Blazquez, A. (2006) Logistic Biplots. In Multiple Correspondence Análisis And Related Methods. Grenacre, M & Blasius, J, Eds, Chapman and Hall, Boca Raton.

Demey, J., Vicente-Villardon, J. L., Galindo, M.P. AND Zambrano, A. (2008) Identifying Molecular Markers Associated With Classification Of Genotypes Using External Logistic Biplots. Bioinformatics, 24(24): 2832-2838.

Examples

Run this code
data(spiders)
X=Dataframe2BinaryMatrix(spiders)

logbip=BinaryLogBiplotGD(X,penalization=0.1)
plot(logbip, Mode="a")
summary(logbip)

Run the code above in your browser using DataLab