## Not run:
# data(Eyam)
#
# loglik_sir <- function(param, data) {
# alpha <- exp(param[1]) # Rates must be non-negative
# beta <- exp(param[2])
#
# # Set-up SIR model
# drates1 <- function(a, b) { 0 }
# brates2 <- function(a, b) { 0 }
# drates2 <- function(a, b) { alpha * b }
# trans12 <- function(a, b) { beta * a * b }
#
# sum(sapply(1:(nrow(data) - 1), # Sum across all time steps k
# function(k) {
# log(
# dbd_prob( # Compute the transition probability matrix
# t = data$time[k + 1] - data$time[k], # Time increment
# a0 = data$S[k], b0 = data$I[k], # From: S(t_k), I(t_k)
# drates1, brates2, drates2, trans12,
# a = data$S[k + 1], B = data$S[k] + data$I[k] - data$S[k + 1],
# computeMode = 4, nblocks = 80 # Compute using 4 threads
# )[1, data$I[k + 1] + 1] # To: S(t_(k+1)), I(t_(k+1))
# )
# }))
# }
#
# loglik_sir(log(c(3.204, 0.019)), Eyam) # Evaluate at mode
# ## End(Not run)
# Birth-death-shift model for transposable elements
lam = 0.0188; mu = 0.0147; v = 0.00268; # birth, death, shift rates
drates1 <- function(a, b) { mu * a }
brates2 <- function(a, b) { lam * (a + b) }
drates2 <- function(a, b) { mu * b }
trans12 <- function(a, b) { v * a }
# Get transition probabilities
p <- dbd_prob(t = 1, a0 = 10, b0 = 0,
drates1, brates2, drates2, trans12,
a = 0, B = 50)
Run the code above in your browser using DataLab