## Model-based hierarchical classification of items from simulated data
# Setup
r = 6 # number of items
n = 1000 # sample size
bev = rep(0,r)
k = r/2
multi = rbind(1:(r/2),(r/2+1):r)
L = chol(matrix(c(1,0.6,0.6,1),2,2))
data = matrix(0,n,r)
model = 1
# Create data
Th = matrix(rnorm(2*n),n,2)<!-- %*%L -->
for(i in 1:n) for(j in 1:r){
if(j<=r/2){
pc = exp(Th[i,1]-bev[j]); pc = pc/(1+pc)
}else{
pc = exp(Th[i,2]-bev[j]); pc = pc/(1+pc)
}
data[i,j] = runif(1)<pc
}
# Aggregate data
out = aggr_data(data)
S = out$data_dis
yv = out$freq
# Create dendrogram for items classification, by assuming k=3 latent
# classes and a Rasch parameterization
out = class_item(S,yv,k=3,link=1)
summary(out)
plot(out$dend)
## Model-based hierarchical classification of NAEP items
# Aggregate data
data(naep)
X = as.matrix(naep)
out = aggr_data(X)
S = out$data_dis
yv = out$freq
# Create dendrogram for items classification, by assuming k=4 latent
# classes and a Rasch parameterization
out = class_item(S,yv,k=4,link=1)
summary(out)
plot(out$dend)
Run the code above in your browser using DataLab