Learn R Programming

MultiStatM (version 2.1.0)

Multivariate Statistical Methods

Description

Algorithms to build set partitions and commutator matrices and their use in the construction of multivariate d-Hermite polynomials; estimation and derivation of theoretical vector moments and vector cumulants of multivariate distributions; conversion formulae for multivariate moments and cumulants. Applications to estimation and derivation of multivariate measures of skewness and kurtosis; estimation and derivation of asymptotic covariances for d-variate Hermite polynomials, multivariate moments and cumulants and measures of skewness and kurtosis. The formulae implemented are discussed in Terdik (2021, ISBN:9783030813925), "Multivariate Statistical Methods".

Copy Link

Version

Install

install.packages('MultiStatM')

Monthly Downloads

263

Version

2.1.0

License

GPL-3

Maintainer

Emanuele Taufer

Last Published

January 25th, 2026

Functions in MultiStatM (2.1.0)

MomCumCFUSN

Moments and cumulants CFUSN
Edgeworth

Edgeworth expansion of a multivariate density
IntHermiteN

IntHermiteN
MomCumUniS

Moments and cumulants Uniform Distribution on the Sphere
HermiteCov12

Covariance matrix for multivariate T-Hermite polynomials
HermiteN

Hermite Polynomials (Univariate and Multivariate)
MomCumGenHyp

Moments and cumulants of the multivariate Generalized Hyperbolic distribution
CommutatorIndx

Commutator Index
IntEdgeworth

Integrate Edgeworth density
SampleEdg

Deprecated function
Partitions

General Partition Function
HermiteCoeff

Coefficients of Hermite polynomials
PartitionTypeAll

Partitions, type and number of partitions
GramCharlier

Gram-Charlier approximation to a multivariate density
CommutatorMatr

Commutator Matrix
SampleGC

Deprecated function
SampleKurt

Estimation of Sample Kurtosis (Mardia, MRSz, Total)
SampleHermiteN

Deprecated function
rUniS

Random multivariate spherically symmetric distributions
rSkewNorm

Random Multivariate Skew Normal
MVStandardize

Standardize multivariate data
SampleSkew

Estimation of Sample Skewness (Mardia, MRSz)
SampleMomCum

Estimation of multivariate T-Moments and T-Cumulants
MomCumSkewNorm

Moments and cumulants d-variate Skew Normal
MomCumMVt

Moments and cumulants Multivariate t-Student distribution
MargMomCum

Marginal moments and cumulants from T-vectors
MomCumZabs

Moments and Cumulants of the Central Folded Normal Distribution
SampleEVSK

Estimation of multivariate Mean, Variance, T-Skewness and T-Kurtosis vectors
QplicMatr

Qplication Matrix
SampleVarianceSkewKurt

Estimated Variance of skewness and kurtosis vectors
SymIndx

Symmetrizing vector
Mom2Cum

Convert moments to cumulants (univariate and multivariate)
PermutationInv

Inverse of a Permutation
VarianceSkew

Asymptotic Variance of the estimated skewness vector
QplicIndx

Qplication vector
VarianceKurt

Asymptotic Variance of the estimated kurtosis vector
SymMatr

Symmetrizer Matrix
UnivMomCum

Deprecated function
rCFUSSD

Random multivariate CFUSSD
rCFUSN

Random multivariate CFUSN
EVSKGenHyp

EVSK multivariate Generalized hyperbolic
Cum2Mom

Convert cumulants to moments (univariate and multivariate)
EVSKUniS

EVSK of the Uniform distribution on the sphere or its modulus
EVSKSkewNorm

EVSK multivariate Skew Normal
EVSKSkewt

EVSK multivariate Skew-t
MTCE

Multivariate tail conditional expectation
EliminIndx

Distinct values selection vector
HermiteN2X

Inverse Hermite Polynomial
EliminMatr

Elimination Matrix
IntGramCharlier

Integrate Gram Charlier density