Learn R Programming

NADIA (version 0.4.1)

PipeOpmissMDA_PCA_MCA_FMAD: PipeOpmissMDA_PCA_MCA_FMAD

Description

Implements PCA, MCA, FMAD methods as mlr3 pipeline, more about methods missMDA_FMAD_MCA_PCA.

Arguments

Input and Output Channels

Input and output channels are inherited from PipeOpImpute.

Parameters

The parameters include inherited from [`PipeOpImpute`], as well as:

  • id :: character(1)
    Identifier of resulting object, default "imput_missMDA_MCA_PCA_FMAD".

  • optimize_ncp :: logical(1)
    If TRUE, parameter number of dimensions, used to predict the missing values, will be optimized. If FALSE, by default ncp=2 is used, default TRUE.

  • set_ncp :: integer(1)
    integer >0. Number of dimensions used by algortims. Used only if optimize_ncp = Flase, default 2.

  • ncp.max :: integer(1)
    Number corresponding to the maximum number of components to test when optimize_ncp=TRUE, default 5.

  • random.seed :: integer(1)
    Integer, by default random.seed = NULL implies that missing values are initially imputed by the mean of each variable. Other values leads to a random initialization, default NULL.

  • maxiter :: integer(1)
    Maximal number of iteration in algorithm, default 998.

  • coeff.ridge :: double(1)
    Value used in Regularized method, default 1.

  • threshold :: double(1)
    Threshold for convergence, default 1e-6.

  • method :: character(1)
    Method used in imputation algorithm, default 'Regularized'.

  • out_fill :: character(1)
    Output log file location. If file already exists log message will be added. If NULL no log will be produced, default NULL.

Super classes

mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpImpute -> missMDA_MCA_PCA_FMAD_imputation

Methods

Inherited methods


Method new()

Usage

PipeOpMissMDA_PCA_MCA_FMAD$new(
  id = "impute_missMDA_MCA_PCA_FMAD_B",
  optimize_ncp = TRUE,
  set_ncp = 2,
  ncp.max = 5,
  random.seed = NULL,
  maxiter = 998,
  coeff.ridge = 1,
  threshold = 1e-06,
  method = "Regularized",
  out_file = NULL
)


Method clone()

The objects of this class are cloneable with this method.

Usage

PipeOpMissMDA_PCA_MCA_FMAD$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

Run this code
# \donttest{

 # Using debug learner for example purpose


  graph <- PipeOpMissMDA_PCA_MCA_FMAD$new() %>>% LearnerClassifDebug$new()
  graph_learner <- GraphLearner$new(graph)

  # Task with NA
  set.seed(1)
  resample(tsk("pima"), graph_learner, rsmp("cv", folds = 3))
# }

Run the code above in your browser using DataLab