Learn R Programming

NADIA (version 0.4.2)

PipeOpVIM_IRMI: PipeOpVIM_IRMI

Description

Implements IRMI methods as mlr3 pipeline, more about VIM_IRMI autotune_VIM_Irmi.

Arguments

Input and Output Channels

Input and output channels are inherited from PipeOpImpute.

Parameters

The parameters include inherited from [`PipeOpImpute`], as well as:

  • id :: character(1)
    Identifier of resulting object, default "imput_VIM_IRMI".

  • eps :: double(1)
    Threshold for convergence, default 5.

  • maxit :: integer(1)
    Maximum number of iterations, default 100

  • step :: logical(1)
    Stepwise model selection is applied when the parameter is set to TRUE, default FALSE.

  • robust :: logical(1)
    If TRUE, robust regression methods will be applied (it's impossible to set step=TRUE and robust=TRUE at the same time), default FALSE.

  • init.method :: character(1)
    Method for initialization of missing values (kNN or median), default 'kNN'.

  • force :: logical(1)
    If TRUE, the algorithm tries to find a solution in any case by using different robust methods automatically (should be set FALSE for simulation), default FALSE.

  • out_fill :: character(1)
    Output log file location. If file already exists log message will be added. If NULL no log will be produced, default NULL.

Super classes

mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpImpute -> VIM_IRMI_imputation

Methods

Inherited methods


Method new()

Usage

PipeOpVIM_IRMI$new(
  id = "impute_VIM_IRMI_B",
  eps = 5,
  maxit = 100,
  step = FALSE,
  robust = FALSE,
  init.method = "kNN",
  force = FALSE,
  out_file = NULL
)


Method clone()

The objects of this class are cloneable with this method.

Usage

PipeOpVIM_IRMI$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

Run this code
# \donttest{
  graph <- PipeOpVIM_IRMI$new() %>>% mlr3learners::LearnerClassifGlmnet$new()
  graph_learner <- GraphLearner$new(graph)

  # Task with NA

  resample(TaskClassif$new('id',tsk('pima')$data(rows=1:100),
  'diabetes'), graph_learner, rsmp("cv",folds=2))
# }

Run the code above in your browser using DataLab