Functions for labeling the clusters in network graph plots with their cluster IDs. The user can specify a cluster-level property by which to rank the clusters, labeling only those clusters above a specified rank.
labelClusters(
net,
plots = NULL,
top_n_clusters = 20,
cluster_id_col = "cluster_id",
criterion = "node_count",
size = 5, color = "black",
greatest_values = TRUE
)addClusterLabels(
plot,
net,
top_n_clusters = 20,
cluster_id_col = "cluster_id",
criterion = "node_count",
size = 5,
color = "black",
greatest_values = TRUE
)
labelClusters() returns a copy of net with the specified plots
annotated.
addClusterLabels() returns an annotated copy of plot.
A list of network objects conforming to the output of
buildRepSeqNetwork() or
generateNetworkObjects().
See details.
Specifies which plots in net$plots to annotate.
Accepts a character vector of element names or a numeric vector of element
position indices.
The default NULL annotates all plots.
A ggraph object containing the network graph plot.
A positive integer specifying the number of clusters to label. Those with the
highest rank according to the criterion argument will be labeled.
Specifies the column of net$node_data containing
the variable for cluster membership.
Accepts a character string containing the column name.
Can be used to specify a cluster-level network property by which to rank the
clusters. Non-default values are ignored unless net$cluster_data exists and
corresponds to the cluster membership variable specified by cluster_id_col.
Accepts a character string containing a column name of net$cluster_data.
The property must be quantitative for the ranking to be meaningful.
By default, clusters are ranked by node count, which is computed based on the
cluster membership values if necessary.
The font size of the cluster ID labels. Passed to the size argument of
geom_node_text().
The color of the cluster ID labels. Passed to the color argument of
geom_node_text().
Logical. Controls whether clusters are ranked according to the greatest or
least values of the property specified by the criterion argument. If
TRUE, clusters with greater values will be ranked above those with
lower values, thereby receiving a higher priority to be labeled.
Brian Neal (Brian.Neal@ucsf.edu)
The list net must contain the named elements
igraph (of class igraph),
adjacency_matrix (a matrix or
dgCMatrix encoding edge connections),
and node_data (a data.frame containing node metadata),
all corresponding to the same network. The lists returned by
buildRepSeqNetwork() and
generateNetworkObjects()
are examples of valid inputs for the net argument.
Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825
addClusterMembership(),
getClusterStats(),
generateNetworkGraphPlots()
set.seed(42)
toy_data <- simulateToyData()
network <- buildRepSeqNetwork(
toy_data, "CloneSeq",
cluster_stats = TRUE,
color_nodes_by = "cluster_id",
color_scheme = "turbo",
color_legend = FALSE,
plot_title = NULL,
plot_subtitle = NULL,
size_nodes_by = 1
)
network <- labelClusters(network)
network$plots$cluster_id
Run the code above in your browser using DataLab