# NOT RUN {
## Load Arabidopsis data
data(arab);
## Specify treatment groups and ids of the two groups to be compared
grp.ids = c(1, 1, 1, 2, 2, 2);
grp1 = 1;
grp2 = 2;
## Estimate normalization factors
norm.factors = estimate.norm.factors(arab);
## Set a random number seed to make results reproducible
set.seed(999);
## Fit the NBP model and perform exact NB test for differential gene expression.
## For demonstration purpose, we will use the first 100 rows of the arab data.
res = nbp.test(arab[1:100,], grp.ids, grp1, grp2,
lib.sizes = colSums(arab), norm.factors = norm.factors, print.level=3);
## The argument lib.sizes is needed since we only use a subset of
## rows. If all rows are used, the following will be adequate:
##
## res = nbp.test(arab, grp.ids, grp1, grp2, norm.factors = norm.factors);
## Show top ten most differentially expressed genes
subset = order(res$p.values)[1:10];
print(res, subset);
## Count the number of differentially expressed genes (e.g. qvalue < 0.05)
alpha = 0.05;
sig.res = res$q.values < alpha;
table(sig.res);
## Show boxplots, MA-plot, mean-variance plot and mean-dispersion plot
par(mfrow=c(3,2));
plot(res);
# }
Run the code above in your browser using DataLab